图的定义及抽象表示

一、无向图

1.1 无向图的定义

边没有方向的图称为无向图。


图的定义及抽象表示_第1张图片
1-1 无向图示例

API定义:

图的定义及抽象表示_第2张图片

1.2 无向图的抽象表示

1.2.1 邻接矩阵法

使用一个V*V的布尔矩阵表示。当顶点v和顶点w之间有相连接的边时,定义v行w列的元素值为true,否则为false。
特点:现实中的图往往有上百万个顶点,但边的数量很少(稀疏图),V2所需的空间往往不能满足。

源码实现:

public class AdjMatrixGraph {
    private int V;
    private int E;
    private boolean[][] adj;
    
    /*
     * Initializes an empty graph with V vertices and 0 edges.
     */
    public AdjMatrixGraph(int V) {
        this.V = V;
        this.E = 0;
        this.adj = new boolean[V][V];
    }
 
    public void addEdge(int v, int w) {
        if (!adj[v][w]) E++;
        adj[v][w] = true;
        adj[w][v] = true;
    }
}
1.2.2 邻接表法

使用一个以顶点为索引的列表数组,数组的每个元素都是和该顶点相邻的顶点列表。
特点:适合稀疏图的表示。节省空间,所需空间与V+E成正比。

1-2-2 无向图的邻接表表示

源码实现:

public class AdjMatrixGraph {
    private static final String NEWLINE = System.getProperty("line.separator");
    private int V;
    private int E;
    private boolean[][] adj;
    
    // empty graph with V vertices
    public AdjMatrixGraph(int V) {
        if (V < 0) throw new RuntimeException("Number of vertices must be nonnegative");
        this.V = V;
        this.E = 0;
        this.adj = new boolean[V][V];
    }

    // random graph with V vertices and E edges
    public AdjMatrixGraph(int V, int E) {
        this(V);
        if (E < 0) throw new RuntimeException("Number of edges must be nonnegative");
        if (E > V*(V-1) + V) throw new RuntimeException("Too many edges");

        // can be inefficient
        while (this.E != E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            addEdge(v, w);
        }
    }

    // number of vertices and edges
    public int V() { return V; }
    public int E() { return E; }

    // add undirected edge v-w
    public void addEdge(int v, int w) {
        if (!adj[v][w]) E++;
        adj[v][w] = true;
        adj[w][v] = true;
    }

    // does the graph contain the edge v-w?
    public boolean contains(int v, int w) {
        return adj[v][w];
    }

    // return list of neighbors of v
    public Iterable adj(int v) {
        return new AdjIterator(v);
    }

    // support iteration over graph vertices
    private class AdjIterator implements Iterator, Iterable {
        private int v;
        private int w = 0;

        AdjIterator(int v) {
            this.v = v;
        }

        public Iterator iterator() {
            return this;
        }

        public boolean hasNext() {
            while (w < V) {
                if (adj[v][w]) return true;
                w++;
            }
            return false;
        }

        public Integer next() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }
            return w++;
        }

        public void remove()  {
            throw new UnsupportedOperationException();
        }
    }

    // string representation of Graph - takes quadratic time
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (int w : adj(v)) {
                s.append(w + " ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }

    // test client
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        AdjMatrixGraph G = new AdjMatrixGraph(V, E);
        StdOut.println(G);
    }
}

二、有向图

2.1 有向图的定义

边有方向的图称为有向图。

2-1 有向图示例

API定义:

2.2 有向图的抽象表示

有向图和无向图一样既可以用邻接表法实现,也可以用邻接矩阵法实现。
本文只给出邻接表的实现方法。

2.2.1 邻接表法

源码实现:

public class Digraph {
    private static final String NEWLINE = System.getProperty("line.separator");
    private final int V;           // number of vertices in this digraph
    private int E;                 // number of edges in this digraph
    private Bag[] adj;    // adj[v] = adjacency list for vertex v
    private int[] indegree;        // indegree[v] = indegree of vertex v
    
    /**
     * Initializes an empty digraph with V vertices.
     *
     * @param  V the number of vertices
     * @throws IllegalArgumentException if {@code V < 0}
     */
    public Digraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
        this.V = V;
        this.E = 0;
        indegree = new int[V];
        adj = (Bag[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag();
        }
    }

    /**  
     * Initializes a digraph from the specified input stream.
     * The format is the number of vertices V,
     * followed by the number of edges E,
     * followed by E pairs of vertices, with each entry separated by whitespace.
     *
     * @param  in the input stream
     * @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
     * @throws IllegalArgumentException if the number of vertices or edges is negative
     * @throws IllegalArgumentException if the input stream is in the wrong format
     */
    public Digraph(In in) {
        try {
            this.V = in.readInt();
            if (V < 0) throw new IllegalArgumentException("number of vertices in a Digraph must be nonnegative");
            indegree = new int[V];
            adj = (Bag[]) new Bag[V];
            for (int v = 0; v < V; v++) {
                adj[v] = new Bag();
            }
            int E = in.readInt();
            if (E < 0) throw new IllegalArgumentException("number of edges in a Digraph must be nonnegative");
            for (int i = 0; i < E; i++) {
                int v = in.readInt();
                int w = in.readInt();
                addEdge(v, w); 
            }
        }
        catch (NoSuchElementException e) {
            throw new IllegalArgumentException("invalid input format in Digraph constructor", e);
        }
    }

    /**
     * Initializes a new digraph that is a deep copy of the specified digraph.
     *
     * @param  G the digraph to copy
     */
    public Digraph(Digraph G) {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < V; v++)
            this.indegree[v] = G.indegree(v);
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack reverse = new Stack();
            for (int w : G.adj[v]) {
                reverse.push(w);
            }
            for (int w : reverse) {
                adj[v].add(w);
            }
        }
    }
        
    /**
     * Returns the number of vertices in this digraph.
     *
     * @return the number of vertices in this digraph
     */
    public int V() {
        return V;
    }

    /**
     * Returns the number of edges in this digraph.
     *
     * @return the number of edges in this digraph
     */
    public int E() {
        return E;
    }


    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Adds the directed edge v鈫抴 to this digraph.
     *
     * @param  v the tail vertex
     * @param  w the head vertex
     * @throws IllegalArgumentException unless both {@code 0 <= v < V} and {@code 0 <= w < V}
     */
    public void addEdge(int v, int w) {
        validateVertex(v);
        validateVertex(w);
        adj[v].add(w);
        indegree[w]++;
        E++;
    }

    /**
     * Returns the vertices adjacent from vertex {@code v} in this digraph.
     *
     * @param  v the vertex
     * @return the vertices adjacent from vertex {@code v} in this digraph, as an iterable
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable adj(int v) {
        validateVertex(v);
        return adj[v];
    }

    /**
     * Returns the number of directed edges incident from vertex {@code v}.
     * This is known as the outdegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the outdegree of vertex {@code v}               
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int outdegree(int v) {
        validateVertex(v);
        return adj[v].size();
    }

    /**
     * Returns the number of directed edges incident to vertex {@code v}.
     * This is known as the indegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the indegree of vertex {@code v}               
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int indegree(int v) {
        validateVertex(v);
        return indegree[v];
    }

    /**
     * Returns the reverse of the digraph.
     *
     * @return the reverse of the digraph
     */
    public Digraph reverse() {
        Digraph reverse = new Digraph(V);
        for (int v = 0; v < V; v++) {
            for (int w : adj(v)) {
                reverse.addEdge(w, v);
            }
        }
        return reverse;
    }

    /**
     * Returns a string representation of the graph.
     *
     * @return the number of vertices V, followed by the number of edges E,  
     *         followed by the V adjacency lists
     */
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " vertices, " + E + " edges " + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(String.format("%d: ", v));
            for (int w : adj[v]) {
                s.append(String.format("%d ", w));
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }

    /**
     * Unit tests the {@code Digraph} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        Digraph G = new Digraph(in);
        StdOut.println(G);
    }
}

三、加权无向图

3.1 加权无向图的定义

加权无向图就是边带权重值得无向图。
API定义:

图的定义及抽象表示_第3张图片
3-1-1 加权无向图的API
3-1-2 加权无向图边的API

3.2 加权无向图的抽象表示

3.2.1 邻接表法
图的定义及抽象表示_第4张图片
3-2-1 加权无向的邻接表表示

边-源码实现:

public class Edge implements Comparable { 
    private final int v;
    private final int w;
    private final double weight;

    /**
     * Initializes an edge between vertices {@code v} and {@code w} of
     * the given {@code weight}.
     *
     * @param  v one vertex
     * @param  w the other vertex
     * @param  weight the weight of this edge
     * @throws IllegalArgumentException if either {@code v} or {@code w} 
     *         is a negative integer
     * @throws IllegalArgumentException if {@code weight} is {@code NaN}
     */
    public Edge(int v, int w, double weight) {
        if (v < 0) throw new IllegalArgumentException("vertex index must be a nonnegative integer");
        if (w < 0) throw new IllegalArgumentException("vertex index must be a nonnegative integer");
        if (Double.isNaN(weight)) throw new IllegalArgumentException("Weight is NaN");
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    /**
     * Returns the weight of this edge.
     *
     * @return the weight of this edge
     */
    public double weight() {
        return weight;
    }

    /**
     * Returns either endpoint of this edge.
     *
     * @return either endpoint of this edge
     */
    public int either() {
        return v;
    }

    /**
     * Returns the endpoint of this edge that is different from the given vertex.
     *
     * @param  vertex one endpoint of this edge
     * @return the other endpoint of this edge
     * @throws IllegalArgumentException if the vertex is not one of the
     *         endpoints of this edge
     */
    public int other(int vertex) {
        if      (vertex == v) return w;
        else if (vertex == w) return v;
        else throw new IllegalArgumentException("Illegal endpoint");
    }

    /**
     * Compares two edges by weight.
     * Note that {@code compareTo()} is not consistent with {@code equals()},
     * which uses the reference equality implementation inherited from {@code Object}.
     *
     * @param  that the other edge
     * @return a negative integer, zero, or positive integer depending on whether
     *         the weight of this is less than, equal to, or greater than the
     *         argument edge
     */
    @Override
    public int compareTo(Edge that) {
        return Double.compare(this.weight, that.weight);
    }

    /**
     * Returns a string representation of this edge.
     *
     * @return a string representation of this edge
     */
    public String toString() {
        return String.format("%d-%d %.5f", v, w, weight);
    }

    /**
     * Unit tests the {@code Edge} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        Edge e = new Edge(12, 34, 5.67);
        StdOut.println(e);
    }
}

加权无向图-源码实现:

public class EdgeWeightedGraph {
    private static final String NEWLINE = System.getProperty("line.separator");
    private final int V;
    private int E;
    private Bag[] adj;
    
    /**
     * Initializes an empty edge-weighted graph with {@code V} vertices and 0 edges.
     *
     * @param  V the number of vertices
     * @throws IllegalArgumentException if {@code V < 0}
     */
    public EdgeWeightedGraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices must be nonnegative");
        this.V = V;
        this.E = 0;
        adj = (Bag[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag();
        }
    }

    /**
     * Initializes a random edge-weighted graph with {@code V} vertices and E edges.
     *
     * @param  V the number of vertices
     * @param  E the number of edges
     * @throws IllegalArgumentException if {@code V < 0}
     * @throws IllegalArgumentException if {@code E < 0}
     */
    public EdgeWeightedGraph(int V, int E) {
        this(V);
        if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            double weight = Math.round(100 * StdRandom.uniform()) / 100.0;
            Edge e = new Edge(v, w, weight);
            addEdge(e);
        }
    }

    /**  
     * Initializes an edge-weighted graph from an input stream.
     * The format is the number of vertices V,
     * followed by the number of edges E,
     * followed by E pairs of vertices and edge weights,
     * with each entry separated by whitespace.
     *
     * @param  in the input stream
     * @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
     * @throws IllegalArgumentException if the number of vertices or edges is negative
     */
    public EdgeWeightedGraph(In in) {
        this(in.readInt());
        int E = in.readInt();
        if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = in.readInt();
            int w = in.readInt();
            validateVertex(v);
            validateVertex(w);
            double weight = in.readDouble();
            Edge e = new Edge(v, w, weight);
            addEdge(e);
        }
    }

    /**
     * Initializes a new edge-weighted graph that is a deep copy of {@code G}.
     *
     * @param  G the edge-weighted graph to copy
     */
    public EdgeWeightedGraph(EdgeWeightedGraph G) {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack reverse = new Stack();
            for (Edge e : G.adj[v]) {
                reverse.push(e);
            }
            for (Edge e : reverse) {
                adj[v].add(e);
            }
        }
    }


    /**
     * Returns the number of vertices in this edge-weighted graph.
     *
     * @return the number of vertices in this edge-weighted graph
     */
    public int V() {
        return V;
    }

    /**
     * Returns the number of edges in this edge-weighted graph.
     *
     * @return the number of edges in this edge-weighted graph
     */
    public int E() {
        return E;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Adds the undirected edge {@code e} to this edge-weighted graph.
     *
     * @param  e the edge
     * @throws IllegalArgumentException unless both endpoints are between {@code 0} and {@code V-1}
     */
    public void addEdge(Edge e) {
        int v = e.either();
        int w = e.other(v);
        validateVertex(v);
        validateVertex(w);
        adj[v].add(e);
        adj[w].add(e);
        E++;
    }

    /**
     * Returns the edges incident on vertex {@code v}.
     *
     * @param  v the vertex
     * @return the edges incident on vertex {@code v} as an Iterable
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable adj(int v) {
        validateVertex(v);
        return adj[v];
    }

    /**
     * Returns the degree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the degree of vertex {@code v}               
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int degree(int v) {
        validateVertex(v);
        return adj[v].size();
    }

    /**
     * Returns all edges in this edge-weighted graph.
     * To iterate over the edges in this edge-weighted graph, use foreach notation:
     * {@code for (Edge e : G.edges())}.
     *
     * @return all edges in this edge-weighted graph, as an iterable
     */
    public Iterable edges() {
        Bag list = new Bag();
        for (int v = 0; v < V; v++) {
            int selfLoops = 0;
            for (Edge e : adj(v)) {
                if (e.other(v) > v) {
                    list.add(e);
                }
                // add only one copy of each self loop (self loops will be consecutive)
                else if (e.other(v) == v) {
                    if (selfLoops % 2 == 0) list.add(e);
                    selfLoops++;
                }
            }
        }
        return list;
    }

    /**
     * Returns a string representation of the edge-weighted graph.
     * This method takes time proportional to E + V.
     *
     * @return the number of vertices V, followed by the number of edges E,
     *         followed by the V adjacency lists of edges
     */
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (Edge e : adj[v]) {
                s.append(e + "  ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }

    /**
     * Unit tests the {@code EdgeWeightedGraph} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeightedGraph G = new EdgeWeightedGraph(in);
        StdOut.println(G);
    }
}

四、加权有向图

4.1 加权有向图的定义

加权有向图就是边带权重值的有向图。
API定义:

图的定义及抽象表示_第5张图片
4-1-1 加权有向图的API定义
4-1-2 加权有向图的边的API定义

4.2 加权有向图的抽象表示

4.2.1 邻接表法
4-2-1 加权有向图的邻接表表示

边-源码实现:

public class DirectedEdge { 
    private final int v;
    private final int w;
    private final double weight;

    /**
     * Initializes a directed edge from vertex {@code v} to vertex {@code w} with
     * the given {@code weight}.
     * @param v the tail vertex
     * @param w the head vertex
     * @param weight the weight of the directed edge
     * @throws IllegalArgumentException if either {@code v} or {@code w}
     *    is a negative integer
     * @throws IllegalArgumentException if {@code weight} is {@code NaN}
     */
    public DirectedEdge(int v, int w, double weight) {
        if (v < 0) throw new IllegalArgumentException("Vertex names must be nonnegative integers");
        if (w < 0) throw new IllegalArgumentException("Vertex names must be nonnegative integers");
        if (Double.isNaN(weight)) throw new IllegalArgumentException("Weight is NaN");
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    /**
     * Returns the tail vertex of the directed edge.
     * @return the tail vertex of the directed edge
     */
    public int from() {
        return v;
    }

    /**
     * Returns the head vertex of the directed edge.
     * @return the head vertex of the directed edge
     */
    public int to() {
        return w;
    }

    /**
     * Returns the weight of the directed edge.
     * @return the weight of the directed edge
     */
    public double weight() {
        return weight;
    }

    /**
     * Returns a string representation of the directed edge.
     * @return a string representation of the directed edge
     */
    public String toString() {
        return v + "->" + w + " " + String.format("%5.2f", weight);
    }

    /**
     * Unit tests the {@code DirectedEdge} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        DirectedEdge e = new DirectedEdge(12, 34, 5.67);
        StdOut.println(e);
    }
}

加权有向图-源码实现:

public class EdgeWeightedDigraph {
    private static final String NEWLINE = System.getProperty("line.separator");
    private final int V;                // number of vertices in this digraph
    private int E;                      // number of edges in this digraph
    private Bag[] adj;    // adj[v] = adjacency list for vertex v
    private int[] indegree;             // indegree[v] = indegree of vertex v
    
    /**
     * Initializes an empty edge-weighted digraph with {@code V} vertices and 0 edges.
     *
     * @param  V the number of vertices
     * @throws IllegalArgumentException if {@code V < 0}
     */
    public EdgeWeightedDigraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
        this.V = V;
        this.E = 0;
        this.indegree = new int[V];
        adj = (Bag[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag();
    }

    /**
     * Initializes a random edge-weighted digraph with {@code V} vertices and E edges.
     *
     * @param  V the number of vertices
     * @param  E the number of edges
     * @throws IllegalArgumentException if {@code V < 0}
     * @throws IllegalArgumentException if {@code E < 0}
     */
    public EdgeWeightedDigraph(int V, int E) {
        this(V);
        if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            double weight = 0.01 * StdRandom.uniform(100);
            DirectedEdge e = new DirectedEdge(v, w, weight);
            addEdge(e);
        }
    }

    /**  
     * Initializes an edge-weighted digraph from the specified input stream.
     * The format is the number of vertices V,
     * followed by the number of edges E,
     * followed by E pairs of vertices and edge weights,
     * with each entry separated by whitespace.
     *
     * @param  in the input stream
     * @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
     * @throws IllegalArgumentException if the number of vertices or edges is negative
     */
    public EdgeWeightedDigraph(In in) {
        this(in.readInt());
        int E = in.readInt();
        if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = in.readInt();
            int w = in.readInt();
            validateVertex(v);
            validateVertex(w);
            double weight = in.readDouble();
            addEdge(new DirectedEdge(v, w, weight));
        }
    }

    /**
     * Initializes a new edge-weighted digraph that is a deep copy of {@code G}.
     *
     * @param  G the edge-weighted digraph to copy
     */
    public EdgeWeightedDigraph(EdgeWeightedDigraph G) {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < G.V(); v++)
            this.indegree[v] = G.indegree(v);
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack reverse = new Stack();
            for (DirectedEdge e : G.adj[v]) {
                reverse.push(e);
            }
            for (DirectedEdge e : reverse) {
                adj[v].add(e);
            }
        }
    }

    /**
     * Returns the number of vertices in this edge-weighted digraph.
     *
     * @return the number of vertices in this edge-weighted digraph
     */
    public int V() {
        return V;
    }

    /**
     * Returns the number of edges in this edge-weighted digraph.
     *
     * @return the number of edges in this edge-weighted digraph
     */
    public int E() {
        return E;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Adds the directed edge {@code e} to this edge-weighted digraph.
     *
     * @param  e the edge
     * @throws IllegalArgumentException unless endpoints of edge are between {@code 0}
     *         and {@code V-1}
     */
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        validateVertex(v);
        validateVertex(w);
        adj[v].add(e);
        indegree[w]++;
        E++;
    }


    /**
     * Returns the directed edges incident from vertex {@code v}.
     *
     * @param  v the vertex
     * @return the directed edges incident from vertex {@code v} as an Iterable
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable adj(int v) {
        validateVertex(v);
        return adj[v];
    }

    /**
     * Returns the number of directed edges incident from vertex {@code v}.
     * This is known as the outdegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the outdegree of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int outdegree(int v) {
        validateVertex(v);
        return adj[v].size();
    }

    /**
     * Returns the number of directed edges incident to vertex {@code v}.
     * This is known as the indegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the indegree of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int indegree(int v) {
        validateVertex(v);
        return indegree[v];
    }

    /**
     * Returns all directed edges in this edge-weighted digraph.
     * To iterate over the edges in this edge-weighted digraph, use foreach notation:
     * {@code for (DirectedEdge e : G.edges())}.
     *
     * @return all edges in this edge-weighted digraph, as an iterable
     */
    public Iterable edges() {
        Bag list = new Bag();
        for (int v = 0; v < V; v++) {
            for (DirectedEdge e : adj(v)) {
                list.add(e);
            }
        }
        return list;
    } 

    /**
     * Returns a string representation of this edge-weighted digraph.
     *
     * @return the number of vertices V, followed by the number of edges E,
     *         followed by the V adjacency lists of edges
     */
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (DirectedEdge e : adj[v]) {
                s.append(e + "  ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }

    /**
     * Unit tests the {@code EdgeWeightedDigraph} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
        StdOut.println(G);
    }
}

你可能感兴趣的:(图的定义及抽象表示)