- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- Storyboard 之segue用法总结
月未央
iOS学习总结iOS
Storyboard的好玩之处在于它可以帮我们省略了很多要手动写的代码,其中segue的功劳功不可没,现总结一下学习心得,若有错误之处,望指正。创建工程,选择SingleViewApplication,给工程起个名字,这里是SegueDemo,注意要把下面的UseStoryboard选项勾选上,我使用ARC,这里可以随意。点选工程文件中的MainStoryboard.storyboard文件,可以
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 【31】单片机编程核心技巧:Switch驱动多任务跑马灯
智木芯语
【编程技巧】单片机嵌入式硬件#STC8#STM32
【31】单片机编程核心技巧:Switch驱动多任务跑马灯七律·双驱Switch双驱控双灯,状态分治显神通。步骤变量定乾坤,定时中断显锋芒。电光石火随心转,程序逻辑自分明。单片机中真王者,一招一式定乾坤。摘要本文以STC8H单片机为例,通过Switch语句实现两路独立的跑马灯控制,系统阐述其多任务并行机制、步骤变量管理及代码实现。Switch语句通过独立的步骤变量(run_step1和run_ste
- 【11】单片机编程核心技巧:进制玄机
智木芯语
单片机嵌入式硬件
【11】单片机编程核心技巧:进制玄机七律·进制玄机二进根基硬件生,八灯辉映万千形。字节八位藏寰宇,变量范围定始终。十六缩影通寄存,十进直观映真容。实验验证真理明,编程妙用万象成。摘要本文系统阐述了单片机编程中二进制、十六进制与十进制的转换方法及其应用。首先,从硬件基础出发,分析了二进制在数字电路中的核心地位,并结合变量位数与取值范围的实例,揭示了二进制在数据存储与运算中的重要性。其次,通过十六进制
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 使用FastAPI部署bge-base和bge-reranker
MoyiTech
fastapipython开发语言RAGrerank
最近在做RAG项目,会频繁使用到本地embedding模型和rerank模型,但是每次跑demo都要用10来秒加载模型,非常慢,所以就封装了接口用于直接调用importosimportnumpyasnpimportloggingimportuvicornimportdatetimefromfastapiimportFastAPI,Security,HTTPExceptionfromfastapi.
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 零信任架构
阿湯哥
架构
零信任架构(ZeroTrustArchitecture,ZTA)零信任架构是一种新型网络安全模型,核心理念是“永不信任,始终验证”(NeverTrust,AlwaysVerify)。它摒弃传统基于边界的安全防护(如防火墙隔离内外部网络),转而通过动态的、细粒度的访问控制,对所有用户、设备和数据流进行持续验证,最小化攻击面并防范内部威胁。一、零信任与传统安全模型的对比维度传统安全模型零信任模型信任基
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 【C++修炼之路】C++动态内存管理
f狐0狸x
【c++修炼之路】c++开发语言c语言数据结构
️专栏:【C++修炼之路】主页:f狐o狸x“于高山之巅,方见大河奔涌;于群峰之上,更觉长风浩荡”目录一、C++内存管理方式1.1new/delete处理内置类型1.2new/delete处理自定义类型二、operatornew与operatordelete函数三、new和delete的实现原理3.1内置类型3.2自定义类型new的原理delete的原理newT[N]的原理delete[]的原理C
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 健康养生:开启高品质生活之门
yy0821yy
生活
健康是人生最宝贵的财富,而养生则是守护健康的智慧之选。在快节奏的现代生活中,掌握健康养生之道,能让我们精力充沛地面对每一天。饮食养生首当其冲。我们应追求均衡饮食,确保每餐都有适量的碳水化合物、蛋白质、脂肪、维生素和矿物质。主食多选择粗粮,如燕麦、玉米等,它们富含膳食纤维,能促进肠道蠕动。优质蛋白质来源包括豆类、鱼类、鸡胸肉等,它们是身体修复和生长的基石。减少高油、高盐、高糖食物的摄入,多吃新鲜的蔬
- 少样本数值型数据集 | 数据增强
蒜蓉趣多多
机器学习人工智能材料工程
对于小样本数字型数据集,数据增强的有效方法主要集中在创造新的样本、调整现有样本的特征、或者通过生成模型来模拟真实分布。下面是个人搜集到的方法及部分代码。希望对大家的科研/工作有所帮助!1.噪声注入(NoiseInjection)方法:在原始数据上添加少量的随机噪声,生成新的样本。噪声可以是高斯噪声、均匀分布噪声或其他分布的噪声。实现:对于每个特征,可以加上一个服从小均值和小方差的正态分布噪声,如X
- 2025-03-15 学习记录--C/C++-PTA 练习3-4 统计字符
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️练习3-4统计字符本题要求编写程序,输入10个字符,统计其中英文字母、空格或回车、数字字符和其他字符的个数。输入格式:输入为10个字符。最后一个回车表示输入结束,不算在内。输出格式:在一行内按照letter=英文字母个数,blank=空格或回车个数,digit=数字字符个数,other=其他字符个数的格式输出。输入样例:a
- 2025-03-13 学习记录--C/C++-PTA 练习2-9 整数四则运算
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️练习2-9整数四则运算本题要求编写程序,计算2个正整数的和、差、积、商并输出。题目保证输入和输出全部在整型范围内。输入格式:输入在一行中给出2个正整数A和B。输出格式:在4行中按照格式“A运算符B=结果”顺序输出和、差、积、商。输入样例:32输出样例:3+2=53-2=13*2=63/2=1二、代码(C语言)⭐️#incl
- 第七篇:数据治理实践工具与资源
小技工丨
数据治理网络数据库大数据数据治理
1.数据治理实践工具与资源1.1数据治理成熟度评估工具数据治理成熟度评估是企业了解自身数据治理现状、识别改进机会的重要工具。通过系统化的评估,企业可以明确数据治理的发展阶段,制定有针对性的改进计划。1.1.1IBM数据治理成熟度评估模型IBM数据治理成熟度评估模型是业界广泛应用的评估工具之一,它从多个维度评估企业的数据治理成熟度。“数据被认为是推动企业增长和商业创新引擎的燃料。数据无疑被组织认定且
- 从零到精通:用go+vue语言打造高效多语言博客系统的完整指南
程序员爱钓鱼
golangvue.js开发语言
后端部分(Go)首先创建文章相关的数据模型packagemodelimport(“gorm.io/gorm”)//Article文章主表typeArticlestruct{gorm.ModelStatusuint8json:"status"gorm:"default:1"//状态:0-禁用1-启用Sortintjson:"sort"gorm:"default:0"//排序AuthorIduintj
- 嵌入式八股,状态机编程
skeete
单片机c语言
while(1){A();B();}假设裸机编程有这样一个程序,A的执行时间非常长,那么程序就会变得比较卡顿。状态机编程的根本思路在于讲一个A()拆分为多个小的函数,比如a1,a2,a3,分别执行这几个状态。使用switch语句和它配合,执行完a1就break,运行B,下一次再执行a2,再运行B。这样就能防止一个任务长时间阻塞。具体来说1.什么是状态机?状态机是一种数学模型,用于描述一个系统在不同
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- 大模型和数据要素赋能实体零售行业数字化转型建设和实施方案
优享智库
大模型数据要素数据治理数据仓库主数据零售
大模型和数据要素赋能实体零售行业数字化转型建设和实施方案更多参考公众号:优享智库引言项目背景与意义数字化转型目标与期望实施方案概述零售行业现状及挑战实体零售行业现状数字化转型面临的挑战市场需求与趋势分析大模型与数据要素赋能策略大模型技术及应用场景数据要素采集、整合与治理赋能策略制定与实施路径数字化转型关键技术与解决方案人工智能技术及应用大数据分析与挖掘技术云计算、物联网等技术支持定制化解决方案设计
- 网络华为HCIA+HCIP网络基础
ssr——ssss
华为网络
目录通信与网络基础网络类型和网络拓扑网络参考模型和标准协议VRP文件系统命令行试图使用快捷键网工基础命令文件系统基本配置命令通信与网络基础通信,是指人与人、人与物、物与物之间通过某种媒介和行为进行的信息传递与交流。网络通信,是指终端设备之间通过计算机网络进行的通信。交换机:距离终端用户最近的设备,用于终端用户接入网络、对数据帧进行交换等。路由器:网络层设备,可以在因特网中进行数据报文转发。路由器根
- 【大模型开发】大模型转换为 NCNN 格式并在 微信小程序 中进行调用
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习微信小程序小程序NCNN小程序调用大模型大模型部署大模型优化部署微信小程序
以下内容将介绍如何将大模型转换为NCNN格式并在微信小程序中进行调用。我们会从整体流程、模型转换工具、NCNNWebAssembly(WASM)编译与集成、小程序前端代码示例等方面进行详细讲解,并在最后给出优化方向与未来建议。目录背景与整体流程概述准备工作2.1常见模型格式与转换思路2.2环境与工具安装模型转换为NCNN格式3.1以ONNX模型为例3.2使用onnx2ncnn工具NCNN在微信小程
- JAVASE(七)关键字this和static,类的结构详解(二)
永无魇足
javajava
目录一、关键字this和static1.关键字this2.关键字static二、代码块1.定义2.实例代码块和静态代码块一、关键字this和static1.关键字thisthis代表当前对象。(1)当方法里面的局部变量和成员变量同名的时候,就可以使用this。如:publicclassHuman{Stringname;Stringgender;publicHuman(Stringname,Stri
- 基于GPT架构的视频生成工具(VideoGPT)
deepdata_cn
视频生成音视频视频生成
VideoGPT是基于GPT架构的视频生成工具,支持从文本生成视频。最初,研究人员尝试将自然语言处理中的GPT架构思想引入视频处理领域,开始探索如何利用其强大的语言理解和生成能力来处理视频的时空信息。模型改进与创新:如VideoGPT+模型结合了先进的图像编码器和视频编码器,克服了传统方法在处理视频时的局限,在捕捉丰富空间细节和理解复杂时间动态上展现出卓越性能。iVideoGPT采用新颖的压缩to
- Android15音频进阶之qnx定位so调用进程(一百一十一)
Android系统攻城狮
AndroidAudio工程师进阶系列音视频Android15QNX音频调试
简介:CSDN博客专家、《Android系统多媒体进阶实战》一书作者新书发布:《Android系统多媒体进阶实战》优质专栏:Audio工程师进阶系列【原创干货持续更新中……】优质专栏:多媒体系统工程师系列【原创干货持续更新中……】优质视频课程:AAOS车载系统+AOSP14系统攻城狮入门视频实战课
- DeepSeek 在代码生成方面的优势解析
草莓屁屁我不吃
人工智能aichatgpt
在AI代码生成领域,DeepSeek通过其DeepSeek-Coder模型展现出强大的能力,与OpenAI的Codex、Meta的CodeLlama、Google的AlphaCode等国际领先模型同台竞争。文章将详细解析DeepSeek在代码生成方面的优势,包括模型架构、数据训练、优化策略、编程语言支持、推理效率等核心技术点。1.DeepSeek-Coder的模型架构优化DeepSeek-Code
- Google Gemini 大模型技术架构剖析
musicml
人工智能
▼最近直播超级多,预约保你有收获近期直播:《从原理到实践教你做出一个Gemini/ChatGPT》—1—Gemini技术架构剖析Google新的多模态模型家族Gemini,它在文本、图像、音频、视频等方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。GeminiUltra是最强大的模型,可在各种高度复杂的任务(包括推理和多
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不