整体流程:
1.定义算法公式
2.定义loss 选定优化器,并制定优化器优化loss
3.迭代数据进行训练
4.在测试集或验证集上对准确率进行测评
首先导入tensorflow 与mnist的input-data 用来获取traning test 包
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
将训练及测试图集保存在项目中的 MNIST_data目录下,没有时会自动联网下载保存
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
注册默认的tensorflow会话
sess = tf.InteractiveSession()
定义输入x 为placeholder占位符
x = tf.placeholder(tf.float32, [None, 784])
定义 权重 W 偏置值b
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
定义y的计算函数 用sotfmax Regression算法
y = softmax(Wx + b)
y = tf.nn.softmax(tf.matmul(x, W) + b)
定义损失函数cross_entropy
cross_entropy 通常用来处理分类问题
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
定义优化算法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
初始化所有变量
sess.run(tf.global_variables_initializer())
迭代 train_step 算法 将batch_xs batch_ys feed给占位符 x y_
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
检验是否正确的预测
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))
完整代码如下:
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
# 注册默认的tensorflow会话
sess = tf.InteractiveSession()
# 输入x placeholder为占位符
x = tf.placeholder(tf.float32, [None, 784])
# 权重 W 偏置值b
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# 定义y的计算函数 用sotfmax Regression算法
# y = softmax(Wx + b)
y = tf.nn.softmax(tf.matmul(x, W) + b)
#定义损失函数cross_entropy
#cross_entropy 通常用来处理分类问题
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# 定义优化算法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 初始化所有变量
sess.run(tf.global_variables_initializer())
# 迭代 train_step 算法 将batch_xs batch_ys feed给占位符 x y_
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# 是否正确的预测
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# 预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))
总结:
Tensorflow中定义的每个公式的计算其实并没有立刻发生,只有等调用run方法并feed数据时计算才会真正的执行。
例如代码中的corss_entropy、train_step、accuracy等都是计算图中的节点,通过run方法执行这些节点来获取结果