线程池-ThreadPoolExecutor

ThreadPoolExecutor

首先来看看线程池的主要工作流程图


线程池-ThreadPoolExecutor_第1张图片
image.png

接下来看看源码实现:

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

AtomicInteger的ctl变量,用低29位表示线程个数,高3位表示线程池状态;

  1. RUNNING :高三位:111,此时的线程池会接收任务,并处理阻塞队列中的任务;这里注意它其实是最小的
  2. SHUTDOWN:高三位:000,此时的线程池不会接收新的任务,但会处理阻塞队列中的任务。
  3. STOP:高三位:001,不接受新的任务,也不处理阻塞队列中的任务,而且中断正在执行的任务。
  4. TIDYING:010
  5. TERMINATED:011

我们使用Executor的execute(Runnable task)提交任务,但是它没有返回值,无法判断任务执行情况;而ExecutorService的submit(Callable task),返回Future,我们通过它来判断任务是否执行成功;

execute

        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
  1. workerCountOf(c)获取低29位,也就是线程数,如果小于核心线程数,则调用addWork方法创建线程执行任务;否则执行步骤2
  2. 若当前线程池状态是RUNNING,则将任务添加到阻塞队列workQueue.offer(command)非阻塞,执行步骤3,否则执行步骤4;
  3. 由于加入队列操作的耗时,所以加进队列后会对当前线程池状态再次进行判断,若不在是RUNNING,则从队列中删除任务,再调用handler处理任务;
  4. addWorker(command, false)创建线程执行任务,执行失败则调用handler处理任务;
线程池-ThreadPoolExecutor_第2张图片
image.png

addWork

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

addWork就是创建线程执行任务的;我们前面说过,线程池有诸多状态,这些状态对应着线程池的行为;
代码逻辑:

  1. 如果状态大于等于SHUTDOWN,则不处理提交的任务直接返回
  2. 当前线程数要小于核心线程数或最大线程数,取决于你要创建什么线程,参数core为true则代表创建的是核心线程,使用循环CAS来确保线程个数增加操作的原子性;

接下来看看addWork源码的下半部分:

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

上面的主要逻辑是,创建执行任务的Worker类,利用ReentrantLock 锁保证插入操作的原子性,指的是将Work插入到HashSet workers中,插入后则启动线程;

Worker

/**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */

看注释,该类主要是控制在线程执行任务时的interrupt操作的。它继承了AbstractQueuedSynchronizer类,实现了一个非重入的锁。
为什么不用ReentrantLock,要用非重入的锁?因为不想让Worker里的任务在调用像setCorePoolSize这类线程池控制方法时能够再重新获取到锁;

Worker类:
1、继承了AQS类,可以方便的实现工作线程的中止操作;AQS维护了一个状态变量,这里Worker利用该变量,初始时设置为-1 ,w.unlock()改为0, w.lock()改为1;这些状态的改变跟ThreadPoolExecutor的shutdownNow有关,shutdownNow会调用interruptWorkers

    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }

里面会调用Worker的interruptIfStarted,worker将自己作为任务,线程start会调用runWork方法,该方法将状态变量由-1,变为0;此时线程拥有可被终止的资格,也就是只有运行的线程甭管它是否acquire成功,都可以中止。

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }

从上面的逻辑可以看出,shutdownNow无论线程是在运行或是acquire失败被阻塞都可以中断。ThreadPoolExecutor里还有shutdown方法,无法中断正在运行的线程,也就是acquire成功的。
2、实现了Runnable接口,可以将自身作为一个任务在工作线程中执行;
3、当前提交的任务firstTask作为参数传入Worker的构造方法

        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

runWorker

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // 允许中断
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
  1. 先通过w.unlock()将同步状态设为0,表示当前线程已经start,可以被中断了。
  2. 当前任务执行完就从阻塞队列中获取任务执行,任务执行用锁保护
  3. 在执行任务的前后,可以根据业务场景自定义beforeExecute和afterExecute方法;
  4. while循环一直获取任务,可以看出线程池会一直通过getTask提供任务让线程执行,getTask返回null,则表示该线程会被释放,如newCachedThreadPool所采取的策略。

getTask

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

allowCoreThreadTimeOut :默认为false,表示允许核心线程空闲

举例子来说说不同策略是怎么利用getTask的:
newFixedThreadPool策略,核心线程数等于最大线程数,keepAliveTime = 0,它的timed一定为false,调用workQueue.take(),一直阻塞直到有新任务加到队列
newCachedThreadPool策略:没有核心线程数,时间为60秒,它的timed一定为true,调用workQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS) ,等待60秒,时间一过返回null,timedOut = true, 由于getTask自旋,下次循环利用CAS将线程数减1,再返回null,runWorker退出循环,线程会被释放 ;

线程池监控

taskCount:线程池需要执行的任务数量。
completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。
largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
getPoolSize:线程池的线程数量。
getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。

参考文章

深入分析java线程池的实现原理
聊聊并发(三)Java线程池的分析和使用

你可能感兴趣的:(线程池-ThreadPoolExecutor)