机器学习每日论文速递[07.30]

同步wx订阅号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)

cs.LG 方向,今日共计95篇

[cs.LG]:

【1】 Tackling Multiple Ordinal Regression Problems: Sparse and Deep Multi-Task Learning Approaches
标题:处理多重有序回归问题:稀疏和深入的多任务学习方法
作者: Lu Wang, Dongxiao Zhu
备注:18 pages, 2 figures
链接:https://arxiv.org/abs/1907.12508

【2】 FDive: Learning Relevance Models using Pattern-based Similarity Measures
标题:FDive:使用基于模式的相似性度量学习相关性模型
作者: Frederik L. Dennig, Michael Behrisch
链接:https://arxiv.org/abs/1907.12489

【3】 Action Grammars: A Cognitive Model for Learning Temporal Abstractions
标题:动作语法:学习时间抽象的认知模型
作者: Robert Tjarko Lange, Aldo Faisal
链接:https://arxiv.org/abs/1907.12477

【4】 Hindsight Trust Region Policy Optimization
标题:后见之明信任区策略优化
作者: Hanbo Zhang, Nanning Zheng
链接:https://arxiv.org/abs/1907.12439

【5】 Quadruply Stochastic Gradients for Large Scale Nonlinear Semi-Supervised AUC Optimization
标题:大规模非线性半监督AUC优化的四重随机梯度
作者: Wanli Shi, Heng Huang
链接:https://arxiv.org/abs/1907.12416

【6】 CloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecasting
标题:CloudLSTM:一种用于时空点云流预测的递归神经模型
作者: Chaoyun Zhang, Paul Patras
链接:https://arxiv.org/abs/1907.12410

【7】 Computing the Value of Data: Towards Applied Data Minimalism
标题:计算数据价值:走向应用数据最小化
作者: Michaela Regneri, Sabine Stamm
链接:https://arxiv.org/abs/1907.12404

【8】 A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
标题:一种结合报酬最大化和授权的统一Bellman优化原则
作者: Felix Leibfried, Jordi Grau-Moya
链接:https://arxiv.org/abs/1907.12392

【9】 Latent Space Factorisation and Manipulation via Matrix Subspace Projection
标题:基于矩阵子空间投影的潜在空间分解与处理
作者: Xiao Li, Frank Guerin
链接:https://arxiv.org/abs/1907.12385

【10】 A comparison of Deep Learning performances with others machine learning algorithms on credit scoring unbalanced data
标题:深度学习与其他机器学习算法在信用评分不平衡数据上的性能比较
作者: Louis Marceau, Eric Charton
链接:https://arxiv.org/abs/1907.12363

【11】 Bandit Convex Optimization in Non-stationary Environments
标题:非平稳环境中的Bandit凸优化
作者: Peng Zhao, Zhi-Hua Zhou
链接:https://arxiv.org/abs/1907.12340

【12】 Learning Invariant Representations for Sentiment Analysis: The Missing Material is Datasets
标题:学习情感分析的不变表示:缺失的材料是数据集
作者: Victor Bouvier, Clément Chastagnol
链接:https://arxiv.org/abs/1907.12305

【13】 Hidden Covariate Shift: A Minimal Assumption For Domain Adaptation
标题:隐协变量移位:领域适应的最小假设
作者: Victor Bouvier, Clément Chastagnol
链接:https://arxiv.org/abs/1907.12299

【14】 Discovering Association with Copula Entropy
标题:发现与Copula熵的关联
作者: Ma Jian
链接:https://arxiv.org/abs/1907.12268

【15】 A Deep Learning Based Attack for The Chaos-based Image Encryption
标题:一种基于深度学习的混沌图像加密攻击
作者: Chen He, Z. Jane Wang
链接:https://arxiv.org/abs/1907.12245

【16】 DETOX: A Redundancy-based Framework for Faster and More Robust Gradient Aggregation
标题:detox:一个基于冗余的框架,用于更快、更健壮的梯度聚合
作者: Shashank Rajput, Dimitris Papailiopoulos
链接:https://arxiv.org/abs/1907.12205

【17】 Bandits with Feedback Graphs and Switching Costs
标题:带反馈图和切换成本的强盗
作者: Raman Arora, Mehryar Mohri
链接:https://arxiv.org/abs/1907.12189

【18】 Multi-modal Predictive Models of Diabetes Progression
标题:糖尿病进展的多模态预测模型
作者: Ramin Ramazi, Rahmatollah Beheshti
链接:https://arxiv.org/abs/1907.12175

【19】 Are Odds Really Odd? Bypassing Statistical Detection of Adversarial Examples
标题:赔率真的很奇怪吗?绕过对抗实例的统计检测
作者: Hossein Hosseini, Radha Poovendran
链接:https://arxiv.org/abs/1907.12138

【20】 AiAds: Automated and Intelligent Advertising System for Sponsored Search
标题:AiAds:用于赞助搜索的自动化和智能广告系统
作者: Xiao Yang, Yanfeng Zhu
备注:Accepted at ACM KDD 2019
链接:https://arxiv.org/abs/1907.12118

【21】 Charting the Right Manifold: Manifold Mixup for Few-shot Learning
标题:绘制正确的流形:流形混合用于少量学习
作者: Puneet Mangla, Balaji Krishnamurthy
链接:https://arxiv.org/abs/1907.12087

【22】 Probabilistic Models of Relational Implication
标题:关系蕴涵的概率模型
作者: Xavier Holt
链接:https://arxiv.org/abs/1907.12048

【23】 Mindful Active Learning
标题:专心主动学习
作者: Zhila Esna Ashari, Hassan Ghasemzadeh
链接:https://arxiv.org/abs/1907.12003

【24】 Blocking Bandits
标题:阻挡土匪
作者: Soumya Basu, Sanjay Shakkottai
链接:https://arxiv.org/abs/1907.11975

【25】 Modeling Winner-Take-All Competition in Sparse Binary Projections
标题:稀疏二元投影中赢家通吃竞争模型
作者: Wenye Li
链接:https://arxiv.org/abs/1907.11959

【26】 Learnable Parameter Similarity
标题:可学习参数相似性
作者: Guangcong Wang, Guangrun Wang
链接:https://arxiv.org/abs/1907.11943

【27】 REP: Predicting the Time-Course of Drug Sensitivity
标题:代表:预测药物敏感性的时间进程
作者: Cheng Qian, Nicholas D. Sidiropoulos
链接:https://arxiv.org/abs/1907.11911

【28】 DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
标题:DeepCABAC:一种通用的深层神经网络压缩算法
作者: Simon Wiedemann, Wojciech Samek
链接:https://arxiv.org/abs/1907.11900

【29】 Multi-task Self-Supervised Learning for Human Activity Detection
标题:用于人体活动检测的多任务自监督学习
作者: Aaqib Saeed, Johan Lukkien
链接:https://arxiv.org/abs/1907.11879

【30】 Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
标题:使用变分推理的模型不可知元学习中的不确定性
作者: Cuong Nguyen, Gustavo Carneiro
链接:https://arxiv.org/abs/1907.11864

【31】 Many could be better than all: A novel instance-oriented algorithm for Multi-modal Multi-label problem
标题:许多可能比全部更好:一种新的面向实例的多模态多标签问题算法
作者: Yi Zhang, Lei Zhang
备注:To be published in ICME 2019
链接:https://arxiv.org/abs/1907.11857

【32】 Generative Adversarial Network for Handwritten Text
标题:手写文本的生成对抗性网络
作者: Bo Ji, Tianyi Chen
备注:12 pages, 7 figures, submitted for WACV 2020
链接:https://arxiv.org/abs/1907.11845

【33】 Scalable Dictionary Classifiers for Time Series Classification
标题:用于时间序列分类的可伸缩字典分类器
作者: Matthew Middlehurst, Anthony Bagnall
链接:https://arxiv.org/abs/1907.11815

【34】 Learning and Interpreting Potentials for Classical Hamiltonian Systems
标题:经典哈密顿系统的学习和解释势
作者: Harish S. Bhat
链接:https://arxiv.org/abs/1907.11806

【35】 Learning Task Specifications from Demonstrations via the Principle of Maximum Causal Entropy
标题:通过最大因果熵原理从演示中学习任务规范
作者: Marcell Vazquez-Chanlatte, Sanjit A. Seshia
链接:https://arxiv.org/abs/1907.11792

【36】 On Hard Exploration for Reinforcement Learning: a Case Study in Pommerman
标题:强化学习的艰苦探索-以Pommerman为例
作者: Chao Gao, Matthew E. Taylor
备注:AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE) 2019
链接:https://arxiv.org/abs/1907.11788

【37】 Understanding Adversarial Robustness: The Trade-off between Minimum and Average Margin
标题:理解对手的稳健性:最小和平均利润率之间的权衡
作者: Kaiwen Wu, Yaoliang Yu
链接:https://arxiv.org/abs/1907.11780

【38】 An Encoder-Decoder Based Approach for Anomaly Detection with Application in Additive Manufacturing
标题:一种基于编解码器的异常检测方法及其在添加剂制造中的应用
作者: Baihong Jin, Alberto Sangiovanni Vincentelli
链接:https://arxiv.org/abs/1907.11778

【39】 Deep Reinforcement Learning for Personalized Search Story Recommendation
标题:深度强化学习在个性化搜索故事推荐中的应用
作者: Jason (Jiasheng) Zhang, Linhong Zhu
链接:https://arxiv.org/abs/1907.11754

【40】 Action Guidance with MCTS for Deep Reinforcement Learning
标题:深度强化学习的MCTS行动指导
作者: Bilal Kartal, Matthew E. Taylor
备注:AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE'19). arXiv admin note: substantial text overlap with arXiv:1904.05759, arXiv:1812.00045
链接:https://arxiv.org/abs/1907.11703

【41】 Finite-Time Performance of Distributed Temporal Difference Learning with Linear Function Approximation
标题:线性函数逼近的分布式时间差分学习的有限时间性能
作者: Thinh T. Doan, Justin Romberg
备注:arXiv admin note: text overlap with arXiv:1902.07393
链接:https://arxiv.org/abs/1907.12530

【42】 Joey NMT: A Minimalist NMT Toolkit for Novices
标题:Joey NMT:面向新手的最简NMT工具包
作者: Julia Kreutzer, Stefan Riezler
链接:https://arxiv.org/abs/1907.12484

【43】 Energy-Efficient Processing and Robust Wireless Cooperative Transmission for Edge Inference
标题:用于边缘推断的节能处理和鲁棒无线协作传输
作者: Kai Yang, Zhi Ding
链接:https://arxiv.org/abs/1907.12475

【44】 Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
标题:基于神经网络的基于强度的距离回归自动病变检测
作者: Kimberlin M.H. van Wijnen, Marleen de Bruijne
备注:MICCAI 2019
链接:https://arxiv.org/abs/1907.12452

【45】 Salient Slices: Improved Neural Network Training and Performance with Image Entropy
标题:显著切片:改进的神经网络训练和图像熵性能
作者: Steven J. Frank, Andrea M. Frank
链接:https://arxiv.org/abs/1907.12436

【46】 sql4ml A declarative end-to-end workflow for machine learning
标题:sql4ml用于机器学习的声明性端到端工作流
作者: Nantia Makrynioti, Vasilis Vassalos
链接:https://arxiv.org/abs/1907.12415

【47】 Lotka-Volterra competition mechanism embedded in a decision-making method
标题:嵌入决策方法的Lotka-Volterra竞争机制
作者: Tomoaki Niiyama, Satoshi Sunada
链接:https://arxiv.org/abs/1907.12399

【48】 Style Conditioned Recommendations
标题:样式有条件的建议
作者: Murium Iqbal, Timothy Anderton
备注:9 pages, 10 figures, Accepted to RecSys '19
链接:https://arxiv.org/abs/1907.12388

【49】 On the Value of Bandit Feedback for Offline Recommender System Evaluation
标题:论Bandit反馈在离线推荐系统评估中的价值
作者: Olivier Jeunen, Flavian Vasile
链接:https://arxiv.org/abs/1907.12384

【50】 Completing partial recipes using item-based collaborative filtering to recommend ingredients
标题:使用基于项目的协作过滤完成部分食谱以推荐配料
作者: Paula Fermín Cueto, Agnieszka Słowik
链接:https://arxiv.org/abs/1907.12380

【51】 Tripartite Vector Representations for Better Job Recommendation
标题:三方向量表示更好的工作推荐
作者: Mengshu Liu, Mohammed Korayem
链接:https://arxiv.org/abs/1907.12379

【52】 Music Recommendations in Hyperbolic Space: An Application of Empirical Bayes and Hierarchical Poincaré Embeddings
标题:双曲空间中的音乐推荐:经验贝叶斯和分层Poincaré嵌入的应用
作者: Tim Schmeier, Brett Vintch
链接:https://arxiv.org/abs/1907.12378

【53】 Topic Modeling with Wasserstein Autoencoders
标题:使用Wasserstein自动编码器的主题建模
作者: Feng Nan, Bing Xiang
备注:to appear at ACL 2019
链接:https://arxiv.org/abs/1907.12374

【54】 Production Ranking Systems: A Review
标题:生产排序系统综述
作者: Murium Iqbal, Kamelia Aryafar
链接:https://arxiv.org/abs/1907.12372

【55】 Detecting Radical Text over Online Media using Deep Learning
标题:利用深度学习检测在线媒体上的偏旁文本
作者: Armaan Kaur, Divya Bansal
备注:The Paper consists of 7 pages with 5 figures. The paper is accepted in Intelligent Information Feed Workshop of 25th ACM SIGKDD Conference 2019 for oral presentation
链接:https://arxiv.org/abs/1907.12368

【56】 Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels
标题:用于推荐引文和主题标签的多模态对抗性自动编码器
作者: Lukas Galke, Ansgar Scherp
备注:Published in: UMAP '18 Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization Pages 197-205
链接:https://arxiv.org/abs/1907.12366

【57】 Collaborative Filtering and Multi-Label Classification with Matrix Factorization
标题:基于矩阵分解的协同过滤和多标签分类
作者: Vikas Kumar
链接:https://arxiv.org/abs/1907.12365

【58】 A Mathematical Model for Linguistic Universals
标题:语言共性的数学模型
作者: Weinan E, Yajun Zhou
备注:Main text (9 pages, 6 figures); Materials and Methods (iii+275 pages, 20 figures, 5 tables)
链接:https://arxiv.org/abs/1907.12293

【59】 StarGAN-VC2: Rethinking Conditional Methods for StarGAN-Based Voice Conversion
标题:StarGAN-VC2:重新思考基于StarGAN的语音转换的条件方法
作者: Takuhiro Kaneko, Nobukatsu Hojo
备注:Accepted to Interspeech 2019. Project page: this http URL
链接:https://arxiv.org/abs/1907.12279

【60】 Silhouette Guided Point Cloud Reconstruction beyond Occlusion
标题:轮廓导引的遮挡后的点云重建
作者: Chuhang Zou, Derek Hoiem
链接:https://arxiv.org/abs/1907.12253

【61】 Reinforcement with Fading Memories
标题:记忆褪色的强化
作者: Kuang Xu, Se-Young Yun
备注:Forthcoming in Mathematics of Operations Research; An extended abstract appeared in the proceedings of ACM SIGMETRICS 2018
链接:https://arxiv.org/abs/1907.12227

【62】 A neural network with feature sparsity
标题:一种具有特征稀疏性的神经网络
作者: Ismael Lemhadri, Robert Tibshirani
链接:https://arxiv.org/abs/1907.12207

【63】 A hybrid neural network model based on improved PSO and SA for bankruptcy prediction
标题:基于改进PSO和SA的破产预测混合神经网络模型
作者: Fatima Zahra Azayite, Said Achchab
链接:https://arxiv.org/abs/1907.12179

【64】 Adaptive spline fitting with particle swarm optimization
标题:基于粒子群优化的自适应样条拟合
作者: Soumya D. Mohanty, Ethan Fahnestock
链接:https://arxiv.org/abs/1907.12160

【65】 A Higher-Order Swiss Army Infinitesimal Jackknife
标题:更高级别的瑞士陆军无限小折刀
作者: Ryan Giordano, Tamara Broderick
链接:https://arxiv.org/abs/1907.12116

【66】 Spatiotemporal Information Processing with a Reservoir Decision-making Network
标题:基于水库决策网络的时空信息处理
作者: Yuanyuan Mi, Si Wu
链接:https://arxiv.org/abs/1907.12071

【67】 Wasserstein Fair Classification
标题:瓦瑟斯坦公平分类
作者: Ray Jiang, Silvia Chiappa
链接:https://arxiv.org/abs/1907.12059

【68】 DAR-Net: Dynamic Aggregation Network for Semantic Scene Segmentation
标题:DAR-NET:面向语义场景分割的动态聚合网络
作者: Zongyue Zhao, Karthik Ramani
链接:https://arxiv.org/abs/1907.12022

【69】 Multi-Rank Sparse and Functional PCA: Manifold Optimization and Iterative Deflation Techniques
标题:多秩稀疏和泛函PCA:流形优化和迭代放气技术
作者: Michael Weylandt
链接:https://arxiv.org/abs/1907.12012

【70】 The Wang-Landau Algorithm as Stochastic Optimization and its Acceleration
标题:作为随机优化的Wang-Landau算法及其加速
作者: Chenguang Dai, Jun S. Liu
链接:https://arxiv.org/abs/1907.11985

【71】 Investigating the effect of competitiveness power in estimating the average weighted price in electricity market
标题:电力市场中竞争力对平均加权电价估算的影响研究
作者: Naser Rostamni, Tarik A. Rashid
链接:https://arxiv.org/abs/1907.11984

【72】 DynWalks: Global Topology and Recent Changes Awareness Dynamic Network Embedding
标题:DynWalks:全局拓扑和最近变化意识动态网络嵌入
作者: Chengbin Hou, Shan He
链接:https://arxiv.org/abs/1907.11968

【73】 hood2vec: Identifying Similar Urban Areas Using Mobility Networks
标题:hood2vec:使用移动网络识别相似的城市区域
作者: Xin Liu, Alexandros Labrinidis
链接:https://arxiv.org/abs/1907.11951

【74】 Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment
标题:伯特真的很强壮吗?自然语言对文本分类和蕴涵的攻击
作者: Di Jin, Peter Szolovits
链接:https://arxiv.org/abs/1907.11932

【75】 MaskGAN: Towards Diverse and Interactive Facial Image Manipulation
标题:MaskGAN:走向多样化和交互式的面部图像处理
作者: Cheng-Han Lee, Ping Luo
链接:https://arxiv.org/abs/1907.11922

【76】 Variational f-divergence Minimization
标题:变分f-散度最小化
作者: Mingtian Zhang, David Barber
链接:https://arxiv.org/abs/1907.11891

【77】 Towards Effective Rebuttal: Listening Comprehension using Corpus-Wide Claim Mining
标题:走向有效反驳:使用语料库范围内的权利要求挖掘的听力理解
作者: Tamar Lavee, Noam Slonim
备注:6th Argument Mining Workshop @ ACL 2019
链接:https://arxiv.org/abs/1907.11889

【78】 Q-MIND: Defeating Stealthy DoS Attacks in SDN with a Machine-learning based Defense Framework
标题:Q-Mind:用基于机器学习的防御框架击败SDN中的隐形DoS攻击
作者: Trung V. Phan, Thomas Bauschert
备注:This paper has been accepted for publication in IEEE GLOBECOM conference 2019
链接:https://arxiv.org/abs/1907.11887

【79】 A Benchmark on Tricks for Large-scale Image Retrieval
标题:一种用于大规模图像检索的Tricks基准测试
作者: ByungSoo Ko, Youngjoon Kim
链接:https://arxiv.org/abs/1907.11854

【80】 Self-Imitation Learning of Locomotion Movements through Termination Curriculum
标题:终止课程中运动动作的自我模仿学习
作者: Amin Babadi, Perttu Hämäläinen
链接:https://arxiv.org/abs/1907.11842

【81】 Learning Instance-wise Sparsity for Accelerating Deep Models
标题:学习实例稀疏性加速深度模型
作者: Chuanjian Liu, Chang Xu
备注:Accepted by IJCAI 2019
链接:https://arxiv.org/abs/1907.11840

【82】 Attribute Aware Pooling for Pedestrian Attribute Recognition
标题:用于行人属性识别的属性感知池
作者: Kai Han, Chang Xu
备注:Accepted by IJCAI 2019
链接:https://arxiv.org/abs/1907.11837

【83】 Deep Learning for CSI Feedback Based on Superimposed Coding
标题:基于叠加编码的CSI反馈深度学习
作者: Chaojin Qing, Chuan Huang
链接:https://arxiv.org/abs/1907.11836

【84】 Pick-and-Learn: Automatic Quality Evaluation for Noisy-Labeled Image Segmentation
标题:Pick-and-Learn:噪声标记图像分割的自动质量评估
作者: Haidong Zhu, Ji Wu
备注:Accepted for MICCAI2019
链接:https://arxiv.org/abs/1907.11835

【85】 Bayesian Robustness: A Nonasymptotic Viewpoint
标题:贝叶斯稳健性:一个非渐近的观点
作者: Kush Bhatia, Michael I. Jordan
链接:https://arxiv.org/abs/1907.11826

【86】 Momentum-Net: Fast and convergent iterative neural network for inverse problems
标题:动量网:快速收敛的反问题迭代神经网络
作者: Il Yong Chun, Jeffrey A. Fessler
链接:https://arxiv.org/abs/1907.11818

【87】 Learning to design from humans: Imitating human designers through deep learning
标题:向人类学习设计:通过深度学习模仿人类设计师
作者: Ayush Raina, Jonathan Cagan
链接:https://arxiv.org/abs/1907.11813

【88】 Memory- and Communication-Aware Model Compression for Distributed Deep Learning Inference on IoT
标题:面向物联网分布式深度学习推理的内存和通信感知模型压缩
作者: Kartikeya Bhardwaj, Radu Marculescu
备注:This preprint is for personal use only. The official article will appear as part of the ESWEEK-TECS special issue and will be presented in the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019
链接:https://arxiv.org/abs/1907.11804

【89】 PingPong: Packet-Level Signatures for Smart Home Device Events
标题:Pingpong:智能家庭设备事件的包级签名
作者: Rahmadi Trimananda, Brian Demsky
链接:https://arxiv.org/abs/1907.11797

【90】 Bias of Homotopic Gradient Descent for the Hinge Loss
标题:同伦梯度下降对铰链损失的偏倚
作者: Denali Molitor, Rachel Ward
链接:https://arxiv.org/abs/1907.11746

【91】 Environment Probing Interaction Policies
标题:环境探测交互策略
作者: Wenxuan Zhou, Abhinav Gupta
备注:Published as a conference paper at ICLR 2019
链接:https://arxiv.org/abs/1907.11740

【92】 A Strategy for Adaptive Sampling of Multi-fidelity Gaussian Process to Reduce Predictive Uncertainty
标题:一种降低预测不确定性的多保真度高斯过程自适应采样策略
作者: Sayan Ghosh, Liping Wang
链接:https://arxiv.org/abs/1907.11739

【93】 Large scale continuous-time mean-variance portfolio allocation via reinforcement learning
标题:基于强化学习的大规模连续时间均值-方差组合分配
作者: Haoran Wang, Xun Yu Zhou
备注:15 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1904.11392
链接:https://arxiv.org/abs/1907.11718

【94】 Learning to Synthesize: Robust Phase Retrieval at Low Photon counts
标题:学习合成:低光子计数下的鲁棒相位恢复
作者: Mo Deng, George Barbastathis
链接:https://arxiv.org/abs/1907.11713

【95】 Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks
标题:深度MRI重建:展开优化算法满足神经网络
作者: Dong Liang, Leslie Ying
链接:https://arxiv.org/abs/1907.11711

翻译:腾讯翻译君

你可能感兴趣的:(机器学习每日论文速递[07.30])