TensorFlow技术解析与实战 9.6 Mnist的无监督学习

# -*- coding:utf-8 -*-

import sys

import importlib

importlib.reload(sys)

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

# 加载数据

mnist = input_data.read_data_sets("./", one_hot=True)

trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels

trX = trX.reshape(-1, 28, 28, 1)  # 28x28x1 input img

teX = teX.reshape(-1, 28, 28, 1)  # 28x28x1 input img

learning_rate = 0.01  # 学习率

training_epochs = 20  # 训练的轮数

batch_size = 256   

display_step = 1

examples_to_show = 10

n_hidden_1 = 256

n_hidden_2 = 128

n_input = 784

X = tf.placeholder("float", [None, n_input])

weights = {

'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),

'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),

}

biases = {

'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),

'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),

'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),

'decoder_b2': tf.Variable(tf.random_normal([n_input])),

}

# 定义压缩函数

def encoder(x):

layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))

layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))

return layer_2

# 定义解压函数

def decoder(x):

layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))

layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))

return layer_2

# 构建模型

encoder_op = encoder(X)

decoder_op = decoder(encoder_op)

# 得出预测值

y_pred = decoder_op

# 得出真实值,即输入值

y_true = X

# 定义损失函数和优化器

cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))

optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

# 训练数据及评估模型

with tf.Session() as sess:

sess.run(init)

total_batch = int(mnist.train.num_examples/batch_size)

# 开始训练

for epoch in range(training_epochs):

for i in range(total_batch):

batch_xs, batch_ys = mnist.train.next_batch(batch_size)

_, c = sess.run([optimizer, cost], feed_dict={X:batch_xs})

if epoch % display_step == 0:

print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))

print("Optimization Finished!")

# 对测试集应用训练好的自动编码网络

encode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})

# 比较此时集原始图片和自动编码网络的重建结果

f, a = plt.subplots(2, 10, figsize=(10, 2))

for i in range(examples_to_show):

a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))

a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))  # 重建结果

f.show()

plt.draw()

plt.waitforbuttonpress()



Epoch: 0001 cost= 0.227401376

Epoch: 0002 cost= 0.183739647

Epoch: 0003 cost= 0.171582803

Epoch: 0004 cost= 0.154930770

Epoch: 0005 cost= 0.147431135

Epoch: 0006 cost= 0.138016164

Epoch: 0007 cost= 0.129596651

Epoch: 0008 cost= 0.127187163

Epoch: 0009 cost= 0.123952985

Epoch: 0010 cost= 0.120612435

Epoch: 0011 cost= 0.121103674

Epoch: 0012 cost= 0.118714407

Epoch: 0013 cost= 0.115889899

Epoch: 0014 cost= 0.115912378

Epoch: 0015 cost= 0.112418912

Epoch: 0016 cost= 0.110988192

Epoch: 0017 cost= 0.109182008

Epoch: 0018 cost= 0.109269865

Epoch: 0019 cost= 0.109637171

Epoch: 0020 cost= 0.107125379

Optimization Finished!


TensorFlow技术解析与实战 9.6 Mnist的无监督学习_第1张图片

你可能感兴趣的:(TensorFlow技术解析与实战 9.6 Mnist的无监督学习)