尚硅谷Netty入门1——NIO

文章目录

  • 1.Netty简介
    • 1.1 Netty介绍
    • 1.2 Netty应用场景
    • 1.3参考资料
  • 2. IO
    • 2.1 I/O 模型
      • 2.1.1 I/O模型基本说明
    • 2.2 BIO、NIO、AIO 使用场景分析
  • 3 BIO编程
    • 3.1 Java BIO 基本介绍
    • 3.2 BIO编程简单流程
    • 3.3 BIO应用实例
      • 问题分析
  • 4 NIO编程
    • 4.1 NIO基本介绍
    • 4.2 BIO与NIO的区别
    • 4.3 NIO三大核心原理示意图
      • 4.3.1 缓冲区(Buffer)
          • 基本介绍
          • Buffer 类及其子类
          • ByteBuffer
      • 4.3.2 通道
          • 基本介绍
          • FileChannel 类
          • 应用实例1 - 本地文件写数据
          • 应用实例2 - 本地文件读数据
          • 应用实例3 - 使用一个 Buffer 完成文件读取、写入
          • 应用实例4 - 拷贝文件 transferFrom 方法
          • 关于 Buffer 和 Channel 的注意事项和细节
      • 4.3.3 Selector(选择器)
          • 基本介绍
          • Selector 示意图和特点说明
          • Selector 类相关方法
          • NIO 非阻塞网络编程原理分析图
          • NIO 非阻塞网络编程快速入门
        • SelectionKey
          • ServerSocketChannel
          • SocketChannel
          • NIO网络编程应用实例 - 群聊系统
  • 5 NIO与零拷贝
    • 5.1零拷贝基本介绍
          • 传统 IO 数据读写
          • mmap 优化
          • sendFile 优化
          • 零拷贝的再次理解
          • mmap 和 sendFile 的区别
    • 5.2 Java AIO基本介绍
          • BIO、NIO、AIO对比

1.Netty简介

1.1 Netty介绍

  • Netty 是由 JBOSS 提供的一个 Java 开源框架,现为 Github 上的独立项目。
  • Netty 是一个异步的、基于事件驱动的网络应用框架,用以快速开发高性能、高可靠性的网络 IO 程序。
  • Netty 主要针对在 TCP 协议下,面向 Client 端的高并发应用,或者 Peer-to-Peer 场景下的大量数据持续传输的应用。
  • Netty 本质是一个 NIO 框架,适用于服务器通讯相关的多种应用场景。
  • 要透彻理解 Netty,需要先学习 NIO,这样我们才能阅读 Netty 的源码

体系结构图
尚硅谷Netty入门1——NIO_第1张图片

1.2 Netty应用场景

互联网行业

  • 互联网行业:在分布式系统中,各个节点之间需要远程服务调用,高性能的 RPC 框架必不可少,Netty 作为异步高性能的通信框架,往往作为基础通信组件被这些 RPC框架使用。
  • 典型的应用有:阿里分布式服务框架 Dubbo 的 RPC 框 架使用 Dubbo 协议进行节点间通信,Dubbo 协议默认使用 Netty 作为基础通信组件,用于实现各进程节点之间的内部通信。

游戏行业

  • 无论是手游服务端还是大型的网络游戏,Java 语言得到了越来越广泛的应用。
  • Netty 作为高性能的基础通信组件,提供了 TCP/UDP 和 HTTP 协议栈,方便定制和开发私有协议栈,账号登录服务器。
    – 地图服务器之间可以方便的通过 Netty 进行高性能的通信。

大数据领域

  • 经典的 Hadoop 的高性能通信和序列化组件 (Avro 实现数据文件共享) 的 RPC 框架,默认采用 Netty 进行跨界点通信。
  • 它的 NettyService 基于 Netty 框架二次封装实现。

1.3参考资料

尚硅谷Netty入门1——NIO_第2张图片

2. IO

2.1 I/O 模型

2.1.1 I/O模型基本说明

  1. I/O 模型简单的理解:就是用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能。

  2. Java 共支持 3 种网络编程模型 I/O 模式:BIO、NIO、AIO。

  3. Java BIO:同步并阻塞(传统阻塞型),服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销。
    尚硅谷Netty入门1——NIO_第3张图片

  4. Java NIO:同步非阻塞,服务器实现模式为一个线程处理多个请求(连接),即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有 I/O 请求就进行处理
    尚硅谷Netty入门1——NIO_第4张图片

  5. Java AIO(NIO.2):异步非阻塞,AIO 引入异步通道的概念,采用了 Proactor 模式,简化了程序编写,有效的请求才启动线程,它的特点是先由操作系统完成后才通知服务端程序启动线程去处理,一般适用于连接数较多且连接时间较长的应用。

2.2 BIO、NIO、AIO 使用场景分析

  • BIO 方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4 以前的唯一选择,但程序简单易理解。
  • NIO 方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,弹幕系统,服务器间通讯等。编程比较复杂,JDK1.4 开始支持。
  • AIO 方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用 OS 参与并发操作,编程比较复杂,JDK7 开始支持。

3 BIO编程

3.1 Java BIO 基本介绍

  1. Java BIO 就是传统的 Java I/O 编程,其相关的类和接口在 java.io。
  2. BIO(BlockingI/O):同步阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,可以通过线程池机制改善(实现多个客户连接服务器)。【后有应用实例】
  3. BIO 方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4 以前的唯一选择,程序简单易理解。

3.2 BIO编程简单流程

  1. 服务器端启动一个 ServerSocket。
  2. 客户端启动 Socket 对服务器进行通信,默认情况下服务器端需要对每个客户建立一个线程与之通讯。
  3. 客户端发出请求后,先咨询服务器是否有线程响应,如果没有则会等待,或者被拒绝。
  4. 如果有响应,客户端线程会等待请求结束后,再继续执行。

3.3 BIO应用实例

  1. 使用 BIO 模型编写一个服务器端,监听 6666 端口,当有客户端连接时,就启动一个线程与之通讯。
  2. 要求使用线程池机制改善,可以连接多个客户端。
  3. 服务器端可以接收客户端发送的数据(telnet 方式即可)。
    代码演示
import java.io.IOException;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class BIOServer {

    public static void main(String[] args) throws IOException {
        //线程池机制

        //思路
        //1. 创建一个线程池
        // 2. 如果有客户端连接 就创建 一个客户端与之通信
        ExecutorService threadPool = Executors.newCachedThreadPool();

        //创建一个ServerSocket
        ServerSocket serverSocket = new ServerSocket(6666);
        System.out.println("服务器端启动了");
        while(true)
        {
            //监听  等待客户端连接
            final Socket accept = serverSocket.accept();
            System.out.println("连接到一个客户端");
            //创建一个线程与之通信
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    //和客户端进行通信
                    handler(accept);

                }
            });
        }
    }

    //编写一个handler方法,与客户端通信
    public static void handler (Socket socket)
    {
        try {
            byte[] bytes=new byte[1024];
            //获取socket输入流
            try {
                InputStream inputStream = socket.getInputStream();
                //循环读取客户端发送的数据
                while (true)
                {
                    System.out.println("线程id:"+Thread.currentThread().getId()+"线程名字"+Thread.currentThread().getName());
                    //读取客户端发送的数据
                    int read = inputStream.read(bytes);
                    if(read!=-1)
                    {
                        String s = new String(bytes, 0, read);
                        System.out.println(s);
                    }
                    else
                    {
                        break;
                    }
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        finally {
            System.out.println("关闭和client的连接");
            try {
                socket.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }


}

运行结果截图
尚硅谷Netty入门1——NIO_第5张图片

问题分析

  • 每个请求都需要创建独立的线程,与对应的客户端进行数据 Read,业务处理,数据 Write。
  • 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大。
  • 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在 Read 操作上,造成线程资源浪费。

4 NIO编程

4.1 NIO基本介绍

  1. Java NIO 全称 Java non-blocking IO,是指 JDK 提供的新 API。从 JDK1.4 开始,Java 提供了一系列改进的输入/输出的新特性,被统称为 NIO(即 NewIO),是同步非阻塞的。
  2. NIO 相关类都被放在 java.nio 包及子包下,并且对原 java.io 包中的很多类进行改写。
  3. NIO 有三大核心部分:Channel(通道)、Buffer(缓冲区)、Selector(选择器) 。
  4. NIO 是面向缓冲区,或者面向块编程的。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动,这就增加了处理过程中的灵活性,使用它可以提供非阻塞式的高伸缩性网络。
  5. Java NIO 的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。
  6. 通俗理解:NIO 是可以做到用一个线程来处理多个操作的。假设有 10000 个请求过来,根据实际情况,可以分配 50 或者 100 个线程来处理。不像之前的阻塞 IO 那样,非得分配 10000 个。
  7. HTTP 2.0 使用了多路复用的技术,做到同一个连接并发处理多个请求,而且并发请求的数量比 HTTP 1.1 大了好几个数量级。
  8. 案例说明NIO中的Buffer
import java.nio.IntBuffer;

public class BasicBuffer {
    public static void main(String[] args) {
        //举例说明buffer的使用
        //创建一个大小为5的buffer 即可以存放5个int
        IntBuffer buffer = IntBuffer.allocate(5);
        for(int i=0;i<buffer.capacity();i++)
        {
            buffer.put(i*2);
        }
        //如何从buffer中获取数据
        //将buffer进行读写转换
        buffer.flip();
        while (buffer.hasRemaining())
        {
            System.out.println(buffer.get());
        }
    }
}

4.2 BIO与NIO的区别

  1. BIO 以流的方式处理数据,而 NIO 以块的方式处理数据,块 I/O 的效率比流 I/O 高很多。
  2. BIO 是阻塞的,NIO 则是非阻塞的。
  3. BIO 基于字节流和字符流进行操作,而 NIO 基于 Channel(通道)和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道。
  4. Buffer和Channel之间的数据流向是双向的

4.3 NIO三大核心原理示意图

尚硅谷Netty入门1——NIO_第6张图片

  1. 每个 Channel 都会对应一个 Buffer。
  2. Selector 对应一个线程,一个线程对应多个 Channel(连接)。
  3. 该图反应了有三个 Channel 注册到该 Selector //程序
  4. 程序切换到哪个 Channel 是由事件决定的,Event 就是一个重要的概念。
  5. Selector 会根据不同的事件,在各个通道上切换。
  6. Buffer 就是一个内存块,底层是有一个数组。
  7. 数据的读取写入是通过 Buffer,这个和 BIO是不同的,BIO 中要么是输入流,或者是输出流,不能双向,但是 NIO 的 Buffer 是可以读也可以写,需要 flip 方法切换
  8. Channel 是双向的,可以返回底层操作系统的情况,比如 Linux,底层的操作系统通道就是双向的。

4.3.1 缓冲区(Buffer)

基本介绍

缓冲区(Buffer):缓冲区本质上是一个可以读写数据的内存块,可以理解成是一个容器对象(含数组),该对象提供了一组方法,可以更轻松地使用内存块,,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况。Channel 提供从文件、网络读取数据的渠道,但是读取或写入的数据都必须经由 Buffer
尚硅谷Netty入门1——NIO_第7张图片

Buffer 类及其子类
  1. 在 NIO 中,Buffer 是一个顶层父类,它是一个抽象类,类的层级关系图:
    尚硅谷Netty入门1——NIO_第8张图片
  2. Buffer 类定义了所有的缓冲区都具有的四个属性来提供关于其所包含的数据元素的信息:
    尚硅谷Netty入门1——NIO_第9张图片
  3. Buffer 类相关方法一览
    尚硅谷Netty入门1——NIO_第10张图片
ByteBuffer

从前面可以看出对于 Java 中的基本数据类型(boolean 除外),都有一个 Buffer 类型与之相对应,最常用的自然是 ByteBuffer 类(二进制数据),该类的主要方法如下:
尚硅谷Netty入门1——NIO_第11张图片

4.3.2 通道

基本介绍
  1. NIO 的通道类似于流,但有些区别如下:
    1. 通道可以同时进行读写,而流只能读或者只能写
    2. 通道可以实现异步读写数据
    3. 通道可以从缓冲读数据,也可以写数据到缓冲:
  2. BIO 中的 Stream 是单向的,例如 FileInputStream 对象只能进行读取数据的操作,而 NIO 中的通道(Channel)是双向的,可以读操作,也可以写操作。
  3. Channel 在 NIO 中是一个接口 public interface Channel extends Closeable{}
  4. 常用的 Channel 类有:FileChannel、DatagramChannel、ServerSocketChannel 和 SocketChannel。【ServerSocketChanne 类似 ServerSocket、SocketChannel 类似 Socket】
  5. FileChannel 用于文件的数据读写,DatagramChannel 用于 UDP 的数据读写,ServerSocketChannel 和 SocketChannel 用于 TCP 的数据读写
FileChannel 类

FileChannel 主要用来对本地文件进行 IO 操作,常见的方法有

方法 说明
public int read(ByteBuffer dst) 从通道读取数据并放到缓冲区中
public int write(ByteBuffer src) 把缓冲区的数据写到通道中
public long transferFrom(ReadableByteChannel src, long position, long count) 从目标通道中复制数据到当前通道
public long transferTo(long position, long count, WritableByteChannel target) 把数据从当前通道复制给目标通道
应用实例1 - 本地文件写数据

实例要求:

  1. 使用前面学习后的 ByteBuffer(缓冲)和 FileChannel(通道),将 “hello word” 写入到 1.txt 中
  2. 文件不存在就创建
  3. 代码演示
import io.netty.buffer.ByteBuf;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.charset.StandardCharsets;

public class NIOFileChannel01 {
    public static void main(String[] args) throws IOException {
        String s="hollow word";
        //创建一个输出流
        FileOutputStream fileOutputStream = new FileOutputStream("./1.txt");
        //通过fileOutputStream获取对应的通道
        FileChannel channel = fileOutputStream.getChannel();

        //创建一个缓存字节流
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        //向缓冲流中写入数据
        buffer.put(s.getBytes(StandardCharsets.UTF_8));
        //对缓存流进行flip
        buffer.flip();
        channel.write(buffer);
        fileOutputStream.close();
    }
}

应用实例2 - 本地文件读数据

实例要求:

  1. 使用前面学习后的 ByteBuffer(缓冲)和 FileChannel(通道),将 file01.txt 中的数据读入到程序,并显示在控制台屏幕
    假定文件已经存在
  2. 代码演示
    public static void main(String[] args) throws IOException {
        //创建文件输入流
        File file = new File("./1.txt");
        FileInputStream fileInputStream = new FileInputStream(file);
        //通过FileInputStream获取对应的FileChannel
        FileChannel channel = fileInputStream.getChannel();

        //创建缓存区
        ByteBuffer buffer = ByteBuffer.allocate((int)file.length());
        //通过通道将数据读到缓存区
        channel.read(buffer);
        String s = new String(buffer.array());
        System.out.println(s);
        fileInputStream.close();
    }
应用实例3 - 使用一个 Buffer 完成文件读取、写入

在这里插入图片描述

实例要求:

  1. 使用 FileChannel(通道)和方法 read、write,完成文件的拷贝
  2. 拷贝一个文本文件 1.txt,放在项目下即可
  3. 代码演示
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class NIOFileChannel03 {
    public static void main(String[] args) throws IOException {
        FileInputStream fileInputStream = new FileInputStream("./1.txt");
        FileChannel channel = fileInputStream.getChannel();

        FileOutputStream fileOutputStream = new FileOutputStream("./2.txt");
        FileChannel channel1 = fileOutputStream.getChannel();

        ByteBuffer buffer = ByteBuffer.allocate(1024);
        while (true)
        {
            //情况buffer
            buffer.clear();
            int read = channel.read(buffer);
            if(read==-1)
            {
                break;
            }
            buffer.flip();
            channel1.write(buffer);
        }
        fileInputStream.close();
        fileOutputStream.close();

    }
}
应用实例4 - 拷贝文件 transferFrom 方法

实例要求:
使用 FileChannel(通道)和方法 transferFrom,完成文件的拷贝
拷贝一张图片
代码演示

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.channels.FileChannel;

public class NIOFileChannel04 {
    public static void main(String[] args) throws IOException {
        //创建相关的流
        FileOutputStream fileOutputStream = new FileOutputStream("./b.jpg");
        FileInputStream fileInputStream = new FileInputStream("./a.jpg");
        //获取各个流对应的通道
        FileChannel channel = fileOutputStream.getChannel();
        FileChannel channel1 = fileInputStream.getChannel();
        //使用transferFrom完成拷贝
        channel.transferFrom(channel1,0,channel1.size());
        //关闭相应的流和通道
        channel.close();
        channel1.close();
        fileInputStream.close();
        fileOutputStream.close();
    }
}
关于 Buffer 和 Channel 的注意事项和细节
  1. ByteBuffer 支持类型化的 put 和 get,put 放入的是什么数据类型,get 就应该使用相应的数据类型来取出,否则可能有 BufferUnderflowException 异常。

import java.nio.ByteBuffer;

public class NIOByteBufferPutGet {

    public static void main(String[] args) {
        
        //创建一个 Buffer
        ByteBuffer buffer = ByteBuffer.allocate(64);

        //类型化方式放入数据
        buffer.putInt(100);
        buffer.putLong(9);
        buffer.putChar('尚');
        buffer.putShort((short) 4);

        //取出
        buffer.flip();
        
        System.out.println();
        
        System.out.println(buffer.getInt());
        System.out.println(buffer.getLong());
        System.out.println(buffer.getChar());
        System.out.println(buffer.getShort());
    }
}
  1. 可以将一个普通 Buffer 转成只读 Buffer【举例说明】

import java.nio.ByteBuffer;

public class ReadOnlyBuffer {

    public static void main(String[] args) {

        //创建一个 buffer
        ByteBuffer buffer = ByteBuffer.allocate(64);

        for (int i = 0; i < 64; i++) {
            buffer.put((byte) i);
        }

        //读取
        buffer.flip();

        //得到一个只读的 Buffer
        ByteBuffer readOnlyBuffer = buffer.asReadOnlyBuffer();
        System.out.println(readOnlyBuffer.getClass());

        //读取
        while (readOnlyBuffer.hasRemaining()) {
            System.out.println(readOnlyBuffer.get());
        }

        readOnlyBuffer.put((byte) 100); //ReadOnlyBufferException
    }
}

  1. NIO 还提供了 MappedByteBuffer,可以让文件直接在内存(堆外的内存)中进行修改,而如何同步到文件由 NIO 来完成。【举例说明】

import java.io.RandomAccessFile;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;

/**
 * 说明 1.MappedByteBuffer 可让文件直接在内存(堆外内存)修改,操作系统不需要拷贝一次
 */
public class MappedByteBufferTest {

    public static void main(String[] args) throws Exception {

        RandomAccessFile randomAccessFile = new RandomAccessFile("1.txt", "rw");
        //获取对应的通道
        FileChannel channel = randomAccessFile.getChannel();

        /**
         * 参数 1:FileChannel.MapMode.READ_WRITE 使用的读写模式
         * 参数 2:0:可以直接修改的起始位置
         * 参数 3:5: 是映射到内存的大小(不是索引位置),即将 1.txt 的多少个字节映射到内存
         * 可以直接修改的范围就是 0-5  5为大小而不是索引
         * 实际类型 DirectByteBuffer
         */
        MappedByteBuffer mappedByteBuffer = channel.map(FileChannel.MapMode.READ_WRITE, 0, 5);

        mappedByteBuffer.put(0, (byte) 'H');
        mappedByteBuffer.put(3, (byte) '9');
        mappedByteBuffer.put(5, (byte) 'Y');//IndexOutOfBoundsException

        randomAccessFile.close();
        System.out.println("修改成功~~");
    }
}
  1. 前面我们讲的读写操作,都是通过一个 Buffer 完成的,NIO 还支持通过多个 Buffer(即 Buffer数组)完成读写操作,即 Scattering 和 Gathering【举例说明】
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Arrays;

/**
 * Scattering:将数据写入到 buffer 时,可以采用 buffer 数组,依次写入 [分散]
 * Gathering:从 buffer 读取数据时,可以采用 buffer 数组,依次读
 */
public class ScatteringAndGatheringTest {

    public static void main(String[] args) throws Exception {
        
        //使用 ServerSocketChannel 和 SocketChannel 网络
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        InetSocketAddress inetSocketAddress = new InetSocketAddress(7000);

        //绑定端口到 socket,并启动
        serverSocketChannel.socket().bind(inetSocketAddress);

        //创建 buffer 数组
        ByteBuffer[] byteBuffers = new ByteBuffer[2];
        byteBuffers[0] = ByteBuffer.allocate(5);
        byteBuffers[1] = ByteBuffer.allocate(3);

        //等客户端连接 (telnet)
        SocketChannel socketChannel = serverSocketChannel.accept();

        int messageLength = 8; //假定从客户端接收 8 个字节

        //循环的读取
        while (true) {
            int byteRead = 0;

            while (byteRead < messageLength) {
                long l = socketChannel.read(byteBuffers);
                byteRead += l; //累计读取的字节数
                System.out.println("byteRead = " + byteRead);
                //使用流打印,看看当前的这个 buffer 的 position 和 limit
                Arrays.asList(byteBuffers).stream().map(buffer -> "position = " + buffer.position() + ", limit = " + buffer.limit()).forEach(System.out::println);
            }

            //将所有的 buffer 进行 flip
            Arrays.asList(byteBuffers).forEach(buffer -> buffer.flip());
            //将数据读出显示到客户端
            long byteWirte = 0;
            while (byteWirte < messageLength) {
                long l = socketChannel.write(byteBuffers);//
                byteWirte += l;
            }
            
            //将所有的buffer进行clear
            Arrays.asList(byteBuffers).forEach(buffer -> {
                buffer.clear();
            });
            
            System.out.println("byteRead = " + byteRead + ", byteWrite = " + byteWirte + ", messagelength = " + messageLength);
        }
    }
}

4.3.3 Selector(选择器)

基本介绍
  1. Java 的 NIO,用非阻塞的 IO 方式。可以用一个线程,处理多个的客户端连接,就会使用到 Selector(选择器)。
  2. Selector 能够检测多个注册的通道上是否有事件发生(注意:多个 Channel 以事件的方式可以注册到同一个 Selector),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管理多个通道,也就是管理多个连接和请求。
  3. 只有在连接/通道真正有读写事件发生时,才会进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护多个线程。
  4. 避免了多线程之间的上下文切换导致的开销。
Selector 示意图和特点说明

说明如下:
尚硅谷Netty入门1——NIO_第12张图片

  1. Netty 的 IO 线程 NioEventLoop 聚合了 Selector(选择器,也叫多路复用器),可以同时并发处理成百上千个客户端连接。
  2. 当线程从某客户端 Socket 通道进行读写数据时,若没有数据可用时,该线程可以进行其他任务。
  3. 线程通常将非阻塞 IO 的空闲时间用于在其他通道上执行 IO 操作,所以单独的线程可以管理多个输入和输出通道。
  4. 由于读写操作都是非阻塞的,这就可以充分提升 IO 线程的运行效率,避免由于频繁 I/O 阻塞导致的线程挂起。
  5. 一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。
Selector 类相关方法

尚硅谷Netty入门1——NIO_第13张图片

注意事项

  1. NIO中的ServerSocketChannel功能类似ServerSocketSocketChannel功能类似 Socket
  2. Selector相关方法说明
    1. selector.select();//阻塞
    2. selector.select(1000);//阻塞 1000 毫秒,在 1000 毫秒后返回
    3. selector.wakeup();//唤醒 selector
    4. selector.selectNow();//不阻塞,立马返还
NIO 非阻塞网络编程原理分析图

NIO 非阻塞网络编程相关的(Selector、SelectionKey、ServerScoketChannel 和 SocketChannel)关系梳理图
尚硅谷Netty入门1——NIO_第14张图片
对上图的说明:

  1. 当客户端连接时,会通过 ServerSocketChannel 得到 SocketChannel。
  2. Selector 进行监听 select 方法,返回有事件发生的通道的个数。
  3. 将 socketChannel 注册到 Selector 上,register(Selector sel, int ops),一个 Selector 上可以注册多个 SocketChannel。
  4. 注册后返回一个 SelectionKey,会和该 Selector 关联(集合)。
  5. 进一步得到各个 SelectionKey(有事件发生)。
  6. 在通过 SelectionKey 反向获取 SocketChannel,方法 channel()。
  7. 可以通过得到的 channel,完成业务处理。
NIO 非阻塞网络编程快速入门

案例:
编写一个 NIO 入门案例,实现服务器端和客户端之间的数据简单通讯(非阻塞)
目的:理解 NIO 非阻塞网络编程机制
NIOServer

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.Iterator;
import java.util.Set;

public class NIOServer {

    public static void main(String[] args) throws IOException {
        //创建serverSocketChannel->serverSocket
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

        //得到一个selector
        Selector selector = Selector.open();

        //绑定服务器端监听的端口
        serverSocketChannel.bind(new InetSocketAddress(6666));

        //设置为非阻塞
        serverSocketChannel.configureBlocking(false);

        //把ServerSocketChannel注册到selector 时间为OP_ACCEPT
        serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);

        //循环等待客户端连接
        while (true)
        {
            //等待一秒如果没有时间发生,返回
            if(selector.select(1000)==0)
            {
                System.out.println("服务器等待一秒,无连接");
                continue;
            }
            /**
             * 返回值>0 获取相关的selectKey集合
             * 1. 如何返回值> 0 表示已经获取到关注的事件
             * 2. selector.selectedKeys() 返回关注事件的集合
             *   通过selectionKeys 反向获取通道
             */
            Set<SelectionKey> selectionKeys = selector.selectedKeys();
            //遍历Set 使用迭代器遍历
            Iterator<SelectionKey> keyIterator = selectionKeys.iterator();
            while (keyIterator.hasNext())
            {
                //获取SelectKey
                SelectionKey key = keyIterator.next();
                //根据key对应的通道做出响应的处理
                if(key.isAcceptable())//如果是OP_ACCEPT 表示有新的客户端进行连接
                {
                    //该客户端生成一个SocketChannel
                    SocketChannel socketChannel = serverSocketChannel.accept();
                    //将SocketChannel设置为非阻塞
                    socketChannel.configureBlocking(false);
                    //将客户端注册到selector 关注时间为OP_READ 同时给SocketChannel关联一个buffer
                    System.out.println("客户端连接成功");
                    socketChannel.register(selector,SelectionKey.OP_READ, ByteBuffer.allocate(1024));
                }
                if(key.isReadable())//发生 OP_READ
                {
                    //通过key获取对应的channel
                    SocketChannel channel =(SocketChannel) key.channel();
                    //获取与之相关联的buffer
                    ByteBuffer buffer =(ByteBuffer) key.attachment();
                    channel.read(buffer);
                    System.out.println("from 客户端 "+new String(buffer.array()));
                }
                //收到从几个中基础当前的selectionKey防止重复操作
                keyIterator.remove();
            }

        }
    }
}

NIOClient

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.StandardCharsets;

public class NIOClient {
    public static void main(String[] args) throws IOException {
        //得到一个网络通道
        SocketChannel socketChannel = SocketChannel.open();
        //设置为非阻塞
        socketChannel.configureBlocking(false);
        //提供服务器的ip的和端口号
        InetSocketAddress inetSocketAddress = new InetSocketAddress("127.0.0.1", 6666);
        //连接服务器
        if(!socketChannel.connect(inetSocketAddress))
        {
            while (!socketChannel.finishConnect())
            {
                System.out.println("正在连接需要时间,客户端不会阻塞其他进程");
            }
        }
        //连接成功发送数据
        String s="hollow word";
        ByteBuffer buffer = ByteBuffer.wrap(s.getBytes(), 0, s.length());
        //发送数据 将buffer数据写入channel
        socketChannel.write(buffer);
        System.in.read();
    }
}

SelectionKey

  1. SelectionKey,表示 Selector 和网络通道的注册关系,共四种:
  • int OP_ACCEPT:有新的网络连接可以 accept,值为 16
  • int OP_CONNECT:代表连接已经建立,值为 8
  • int OP_READ:代表读操作,值为 1
  • int OP_WRITE:代表写操作,值为 4
    源码中:
public static final int OP_READ = 1 << 0;
public static final int OP_WRITE = 1 << 2;
public static final int OP_CONNECT = 1 << 3;
public static final int OP_ACCEPT = 1 << 4;
  1. SelectionKey 相关方法
    尚硅谷Netty入门1——NIO_第15张图片
ServerSocketChannel
  1. ServerSocketChannel 在服务器端监听新的客户端 Socket 连接,负责监听,不负责实际的读写操作
  2. 相关方法如下
    尚硅谷Netty入门1——NIO_第16张图片
SocketChannel
  1. SocketChannel,网络 IO 通道,具体负责进行读写操作。NIO 把缓冲区的数据写入通道,或者把通道里的数据读到缓冲区。
  2. 相关方法如下
    尚硅谷Netty入门1——NIO_第17张图片
NIO网络编程应用实例 - 群聊系统

实例要求:

  1. 编写一个 NIO 群聊系统,实现服务器端和客户端之间的数据简单通讯(非阻塞)
  2. 实现多人群聊
  3. 服务器端:可以监测用户上线,离线,并实现消息转发功能
  4. 客户端:通过 Channel 可以无阻塞发送消息给其它所有用户,同时可以接受其它用户发送的消息(有服务器转发得到)
  5. 目的:进一步理解 NIO 非阻塞网络编程机制
  6. 示意图分析和代码
    尚硅谷Netty入门1——NIO_第18张图片代码
    服务端
public class GroupChatServer {

    //定义属性
    private Selector selector;
    private ServerSocketChannel listenChannel;

    private static final int PORT = 6667;

    //构造器
    //初始化工作
    public GroupChatGroup() {
        try {
            //得到选择器
            selector = Selector.open();
            //ServerSocketChannel
            listenChannel = ServerSocketChannel.open();
            //绑定端口
            listenChannel.socket().bind(new InetSocketAddress(PORT));
            //设置非阻塞模式
            listenChannel.configureBlocking(false);
            //将该 listenChannel 注册到 selector
            listenChannel.register(selector, SelectionKey.OP_ACCEPT);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public void listen() {
        try {
            //循环处理
            while (true) {
                int count = selector.select();
                if (count > 0) { //有事件处理
                    // 遍历得到 selectionKey 集合
                    Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
                    while (iterator.hasNext()) {
                        //取出 selectionkey
                        SelectionKey key = iterator.next();
                        //监听到 accept
                        if (key.isAcceptable()) {
                            SocketChannel sc = listenChannel.accept();
                            sc.configureBlocking(false);
                            //将该 sc 注册到 seletor
                            sc.register(selector, SelectionKey.OP_READ);
                            //提示
                            System.out.println(sc.getRemoteAddress() + " 上线 ");
                        }
                        if (key.isReadable()) {//通道发送read事件,即通道是可读的状态
                            // 处理读(专门写方法..)
                            readData(key);
                        }
                        //当前的 key 删除,防止重复处理
                        iterator.remove();
                    }
                } else {
                    System.out.println("等待....");
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //发生异常处理....
        }
    }

    //读取客户端消息
    public void readData(SelectionKey key) {
        SocketChannel channel = null;
        try {
            //得到 channel
            channel = (SocketChannel) key.channel();
            //创建 buffer
            ByteBuffer buffer = ByteBuffer.allocate(1024);
            int count = channel.read(buffer);
            //根据 count 的值做处理
            if (count > 0) {
                //把缓存区的数据转成字符串
                String msg = new String(buffer.array());
                //输出该消息
                System.out.println("form客户端:" + msg);
                //向其它的客户端转发消息(去掉自己),专门写一个方法来处理
                sendInfoToOtherClients(msg, channel);
            }
        } catch (IOException e) {
            try {
                System.out.println(channel.getRemoteAddress() + "离线了..");
                //取消注册
                key.cancel();
                //关闭通道
                channel.close();
            } catch (IOException e2) {
                e2.printStackTrace();
            }
        }
    }

    //转发消息给其它客户(通道)
    private void sendInfoToOtherClients(String msg, SocketChannel self) throws IOException {

        System.out.println("服务器转发消息中...");
        //遍历所有注册到 selector 上的 SocketChannel,并排除 self
        for (SelectionKey key : selector.keys()) {
            //通过 key 取出对应的 SocketChannel
            Channel targetChannel = key.channel();
            //排除自己
            if (targetChannel instanceof SocketChannel && targetChannel != self) {
                //转型
                SocketChannel dest = (SocketChannel) targetChannel;
                //将 msg 存储到 buffer
                ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
                //将 buffer 的数据写入通道
                dest.write(buffer);
            }
        }
    }

    public static void main(String[] args) {
        //创建服务器对象
        GroupChatGroup groupChatServer = new GroupChatGroup();
        groupChatServer.listen();
    }
}

客户端

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Scanner;

public class GroupChatClient {

    //定义相关的属性
    private final String HOST = "127.0.0.1";//服务器的ip
    private final int PORT = 6667;//服务器端口
    private Selector selector;
    private SocketChannel socketChannel;
    private String username;

    //构造器,完成初始化工作
    public GroupChatClient() throws IOException {

        selector = Selector.open();
        //连接服务器
        socketChannel = SocketChannel.open(new InetSocketAddress(HOST, PORT));
        //设置非阻塞
        socketChannel.configureBlocking(false);
        //将 channel 注册到selector
        socketChannel.register(selector, SelectionKey.OP_READ);
        //得到 username
        username = socketChannel.getLocalAddress().toString().substring(1);
        System.out.println(username + " is ok...");
    }

    //向服务器发送消息
    public void sendInfo(String info) {
        info = username + " 说:" + info;
        try {
            socketChannel.write(ByteBuffer.wrap(info.getBytes()));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    //读取从服务器端回复的消息
    public void readInfo() {
        try {
            int readChannels = selector.select();
            if (readChannels > 0) {//有可以用的通道
                Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
                while (iterator.hasNext()) {
                    SelectionKey key = iterator.next();
                    if (key.isReadable()) {
                        //得到相关的通道
                        SocketChannel sc = (SocketChannel) key.channel();
                        //得到一个 Buffer
                        ByteBuffer buffer = ByteBuffer.allocate(1024);
                        //读取
                        sc.read(buffer);
                        //把读到的缓冲区的数据转成字符串
                        String msg = new String(buffer.array());
                        System.out.println(msg.trim());
                    }
                }
                iterator.remove(); //删除当前的 selectionKey,防止重复操作
            } else {
                //System.out.println("没有可以用的通道...");
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) throws Exception {

        //启动我们客户端
        GroupChatClient chatClient = new GroupChatClient();
        //启动一个线程,每个 3 秒,读取从服务器发送数据
        new Thread() {
            public void run() {
                while (true) {
                    chatClient.readInfo();
                    try {
                        Thread.currentThread().sleep(3000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }.start();

        //发送数据给服务器端
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNextLine()) {
            String s = scanner.nextLine();
            chatClient.sendInfo(s);
        }
    }
}

5 NIO与零拷贝

5.1零拷贝基本介绍

零拷贝是网络编程的关键,很多性能优化都离不开。
在 Java 程序中,常用的零拷贝有 mmap(内存映射)和 sendFile。那么,他们在 OS 里,到底是怎么样的一个的设计?我们分析 mmap 和 sendFile 这两个零拷贝
零拷贝是从操作系统上面看的即没有CPU拷贝
另外我们看下 NIO 中如何使用零拷贝

传统 IO 数据读写
File file = new File("test.txt");
RandomAccessFile raf = new RandomAccessFile(file, "rw");

byte[] arr = new byte[(int) file.length()];
raf.read(arr);

Socket socket = new ServerSocket(8080).accept();
socket.getOutputStream().write(arr);

传统IO模型
尚硅谷Netty入门1——NIO_第19张图片
DMA:direct memory access 直接内存拷贝(不使用 CPU)
Hard drive:硬盘
Kernel buffer:内核缓存区
user buffer:用户缓存区
protocol engine:协议及协议栈

mmap 优化

mmap 通过内存映射,将文件映射到内核缓冲区,同时,用户空间可以共享内核空间的数据(kernel buffer和user buffer共享数据)。这样,在进行网络传输时,就可以减少内核空间到用户空间的拷贝次数。
尚硅谷Netty入门1——NIO_第20张图片

sendFile 优化
  1. Linux2.1 版本提供了 sendFile 函数,其基本原理如下:数据根本不经过用户态,直接从内核缓冲区进入到 SocketBuffer,同时,由于和用户态完全无关,就减少了一次上下文切换
    尚硅谷Netty入门1——NIO_第21张图片
  2. Linux在2.4 版本中,做了一些修改,避免了从内核缓冲区拷贝到 Socketbuffer 的操作,直接拷贝到协议栈,从而再一次减少了数据拷贝。具体如下图和小结:
    尚硅谷Netty入门1——NIO_第22张图片
    这里其实有一次 cpu 拷贝 kernel buffer -> socket buffer 但是,拷贝的信息很少,比如 lenght、offset 消耗低,可以忽略
零拷贝的再次理解

我们说零拷贝,是从操作系统的角度来说的。因为内核缓冲区之间,没有数据是重复的(只有 kernel buffer 有一份数据)。
零拷贝不仅仅带来更少的数据复制,还能带来其他的性能优势,例如更少的上下文切换,更少的 CPU 缓存伪共享以及无 CPU 校验和计算。

mmap 和 sendFile 的区别
  • mmap 适合小数据量读写,sendFile 适合大文件传输。
  • mmap 需要 4 次上下文切换,3 次数据拷贝;sendFile 需要 3 次上下文切换,最少 2 次数据拷贝。
  • sendFile 可以利用 DMA 方式,减少 CPU 拷贝,mmap 则不能(必须从内核拷贝到 Socket缓冲区)。

5.2 Java AIO基本介绍

  1. JDK7 引入了Asynchronous I/O 即AIO,在进行I/O编程中,通常用到两种模式 Reactor和Proactor,Java的NIO就是Reactor,当有事件触发时,服务器端得到通知,进行相应的处理
  2. AIO即NIO2.0,叫作异步不阻塞IO、AIO引入了异步通信的概念,采用了Proactor模式,简化了程序编写,有效的请求才启动线程,他的特点是先有操作系统完成后才通知服务端的程序去启动线程处理,一般用于连接数较多,且连接时间较长的应用
BIO、NIO、AIO对比
BIO NIO AIO
IO模型 同步阻塞 同步非阻塞(多路复用) 异步非 阻塞
编程难度 简单 复杂 复杂
可靠性
吞吐量

你可能感兴趣的:(java,java)