前言碎语
skywalking是个非常不错的apm产品,但是在使用过程中有个非常蛋疼的问题,在基于es的存储情况下,es的数据一有问题,就会导致整个skywalking web ui服务不可用,然后需要agent端一个服务一个服务的停用,然后服务重新部署后好,全部走一遍。这种问题同样也会存在skywalking的版本升级迭代中。而且apm 这种过程数据是允许丢弃的,默认skywalking中关于trace的数据记录只保存了90分钟。故博主准备将skywalking的部署容器化,一键部署升级。下文是整个skywalking 容器化部署的过程。
目标:将skywalking的docker镜像运行在k8s的集群环境中提供服务
docker镜像构建
FROM registry.cn-xx.xx.com/keking/jdk:1.8 ADD apache-skywalking-apm-incubating/ /opt/apache-skywalking-apm-incubating/ RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \ && echo 'Asia/Shanghai' >/etc/timezone \ && chmod +x /opt/apache-skywalking-apm-incubating/config/setApplicationEnv.sh \ && chmod +x /opt/apache-skywalking-apm-incubating/webapp/setWebAppEnv.sh \ && chmod +x /opt/apache-skywalking-apm-incubating/bin/startup.sh \ && echo "tail -fn 100 /opt/apache-skywalking-apm-incubating/logs/webapp.log" >> /opt/apache-skywalking-apm-incubating/bin/startup.sh EXPOSE 8080 10800 11800 12800 CMD /opt/apache-skywalking-apm-incubating/config/setApplicationEnv.sh \ && sh /opt/apache-skywalking-apm-incubating/webapp/setWebAppEnv.sh \ && /opt/apache-skywalking-apm-incubating/bin/startup.sh
在编写Dockerfile时需要考虑几个问题:skywalking中哪些配置需要动态配置(运行时设置)?怎么保证进程一直运行(skywalking 的startup.sh和tomcat中 的startup.sh类似)?
application.yml
#cluster: # zookeeper: # hostPort: localhost:2181 # sessionTimeout: 100000 naming: jetty: #OS real network IP(binding required), for agent to find collector cluster host: 0.0.0.0 port: 10800 contextPath: / cache: # guava: caffeine: remote: gRPC: # OS real network IP(binding required), for collector nodes communicate with each other in cluster. collectorN --(gRPC) --> collectorM host: #real_host port: 11800 agent_gRPC: gRPC: #os real network ip(binding required), for agent to uplink data(trace/metrics) to collector. agent--(grpc)--> collector host: #real_host port: 11800 # Set these two setting to open ssl #sslCertChainFile: $path #sslPrivateKeyFile: $path # Set your own token to active auth #authentication: xxxxxx agent_jetty: jetty: # OS real network IP(binding required), for agent to uplink data(trace/metrics) to collector through HTTP. agent--(HTTP)--> collector # SkyWalking native Java/.Net/node.js agents don't use this. # Open this for other implementor. host: 0.0.0.0 port: 12800 contextPath: / analysis_register: default: analysis_jvm: default: analysis_segment_parser: default: bufferFilePath: ../buffer/ bufferOffsetMaxFileSize: 10M bufferSegmentMaxFileSize: 500M bufferFileCleanWhenRestart: true ui: jetty: # Stay in `localhost` if UI starts up in default mode. # Change it to OS real network IP(binding required), if deploy collector in different machine. host: 0.0.0.0 port: 12800 contextPath: / storage: elasticsearch: clusterName: #elasticsearch_clusterName clusterTransportSniffer: true clusterNodes: #elasticsearch_clusterNodes indexShardsNumber: 2 indexReplicasNumber: 0 highPerformanceMode: true # Batch process setting, refer to https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.5/java-docs-bulk-processor.html bulkActions: 2000 # Execute the bulk every 2000 requests bulkSize: 20 # flush the bulk every 20mb flushInterval: 10 # flush the bulk every 10 seconds whatever the number of requests concurrentRequests: 2 # the number of concurrent requests # Set a timeout on metric data. After the timeout has expired, the metric data will automatically be deleted. traceDataTTL: 2880 # Unit is minute minuteMetricDataTTL: 90 # Unit is minute hourMetricDataTTL: 36 # Unit is hour dayMetricDataTTL: 45 # Unit is day monthMetricDataTTL: 18 # Unit is month #storage: # h2: # url: jdbc:h2:~/memorydb # userName: sa configuration: default: #namespace: xxxxx # alarm threshold applicationApdexThreshold: 2000 serviceErrorRateThreshold: 10.00 serviceAverageResponseTimeThreshold: 2000 instanceErrorRateThreshold: 10.00 instanceAverageResponseTimeThreshold: 2000 applicationErrorRateThreshold: 10.00 applicationAverageResponseTimeThreshold: 2000 # thermodynamic thermodynamicResponseTimeStep: 50 thermodynamicCountOfResponseTimeSteps: 40 # max collection's size of worker cache collection, setting it smaller when collector OutOfMemory crashed. workerCacheMaxSize: 10000 #receiver_zipkin: # default: # host: localhost # port: 9411 # contextPath: /
webapp.yml
server: port: 8080 collector: path: /graphql ribbon: ReadTimeout: 10000 listOfServers: #real_host:10800 security: user: admin: password: #skywalking_password
动态配置:密码,grpc等需要绑定主机的ip都需要运行时设置,这里我们在启动skywalking的startup.sh只之前,先执行了两个设置配置的脚本,通过k8s在运行时设置的环境变量来替换需要动态配置的参数
setApplicationEnv.sh
#!/usr/bin/env sh sed -i "s/#elasticsearch_clusterNodes/${elasticsearch_clusterNodes}/g" /opt/apache-skywalking-apm-incubating/config/application.yml sed -i "s/#elasticsearch_clusterName/${elasticsearch_clusterName}/g" /opt/apache-skywalking-apm-incubating/config/application.yml sed -i "s/#real_host/${real_host}/g" /opt/apache-skywalking-apm-incubating/config/application.yml
setWebAppEnv.sh
#!/usr/bin/env sh sed -i "s/#skywalking_password/${skywalking_password}/g" /opt/apache-skywalking-apm-incubating/webapp/webapp.yml sed -i "s/#real_host/${real_host}/g" /opt/apache-skywalking-apm-incubating/webapp/webapp.yml
保持进程存在:通过在skywalking 启动脚本startup.sh末尾追加"tail -fn 100 /opt/apache-skywalking-apm-incubating/logs/webapp.log",来让进程保持运行,并不断输出webapp.log的日志
Kubernetes中部署
apiVersion: extensions/v1beta1 kind: Deployment metadata: name: skywalking namespace: uat spec: replicas: 1 selector: matchLabels: app: skywalking template: metadata: labels: app: skywalking spec: imagePullSecrets: - name: registry-pull-secret nodeSelector: apm: skywalking containers: - name: skywalking image: registry.cn-xx.xx.com/keking/kk-skywalking:5.2 imagePullPolicy: Always env: - name: elasticsearch_clusterName value: elasticsearch - name: elasticsearch_clusterNodes value: 172.16.16.129:31300 - name: skywalking_password value: xxx - name: real_host valueFrom: fieldRef: fieldPath: status.podIP resources: limits: cpu: 1000m memory: 4Gi requests: cpu: 700m memory: 2Gi --- apiVersion: v1 kind: Service metadata: name: skywalking namespace: uat labels: app: skywalking spec: selector: app: skywalking ports: - name: web-a port: 8080 targetPort: 8080 nodePort: 31180 - name: web-b port: 10800 targetPort: 10800 nodePort: 31181 - name: web-c port: 11800 targetPort: 11800 nodePort: 31182 - name: web-d port: 12800 targetPort: 12800 nodePort: 31183 type: NodePort
Kubernetes部署脚本中唯一需要注意的就是env中关于pod ip的获取,skywalking中有几个ip必须绑定容器的真实ip,这个地方可以通过环境变量设置到容器里面去
文末结语
整个skywalking容器化部署从测试到可用大概耗时1天,其中花了个多小时整了下谭兄的skywalking-docker镜像(https://hub.docker.com/r/wutang/skywalking-docker/),发现有个脚本有权限问题(谭兄反馈已解决,还没来的及测试),以及有几个地方自己不是很好控制,便build了自己的docker镜像,其中最大的问题还是解决集群中网络通讯的问题,一开始我把skywalking中的服务ip都设置为0.0.0.0,然后通过集群的nodePort映射出来,这个时候的agent通过集群ip+31181是可以访问到naming服务的,然后通过naming服务获取到的collector gRPC服务缺变成了0.0.0.0:11800, 这个地址agent肯定访问不到collector的,后面通过绑定pod ip的方式解决了这个问题。
以上就是skywalking容器化部署docker镜像构建k8s从测试到可用的详细内容,更多关于skywalking容器化部署docker镜像构建k8s的资料请关注脚本之家其它相关文章!