目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)

制作数据集

利用Colabeler可以制作数据集,对图片进行标注。目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第1张图片

导出voc模式

如图所示,标注完后,可以导出voc模式
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第2张图片
准备好大量的数据之后,可以将数据集放在项目当中。在yolov5下面创建一个文件夹Power_data,在Power_data文件夹下面再建立一个标注文件夹Annotations,用来存放voc文件,建立ImageSets文件夹,用来存放图片,其中,图片名称和导出的voc名称需要一样,否则无法对应识别,把制作好的数据集复制粘贴进去即可。
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第3张图片
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第4张图片
数据集处理完毕之后,我们需要把voc的数据处理成如下,把x,y轴,长宽都提出来。
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第5张图片

创建文件

我们在Power_data创建一个python文件,利用脚本转换
在这里插入图片描述
先运行split_train_val

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行完之后会在ImageSets文件下面产生一个Main文件夹,其中包含四个文件。
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第6张图片
再运行makeTxt

import os
import random


trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('ImageSets/trainval.txt', 'w')
ftest = open('ImageSets/test.txt', 'w')
ftrain = open('ImageSets/train.txt', 'w')
fval = open('ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

该程序运行完后,会在ImageSets文件下产生四个文件
最后运行voc_label

# xml解析包
import xml.etree.ElementTree as ET
import pickle
import os
# os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
from os import listdir, getcwd
from os.path import join

sets = ['train', 'test', 'val']
classes = ['CA001', 'CA002', 'CA003', 'CA004',
           'CB001', 'CB002', 'CB003', 'CB004',
           'CC001', 'CC002', 'CC003', 'CC004',
           'CD001', 'CD002', 'CD003', 'CD004']


# 进行归一化操作
def convert(size, box):  # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)
    dw = 1. / size[0]  # 1/w
    dh = 1. / size[1]  # 1/h
    x = (box[0] + box[1]) / 2.0  # 物体在图中的中心点x坐标
    y = (box[2] + box[3]) / 2.0  # 物体在图中的中心点y坐标
    w = box[1] - box[0]  # 物体实际像素宽度
    h = box[3] - box[2]  # 物体实际像素高度
    x = x * dw  # 物体中心点x的坐标比(相当于 x/原图w)
    w = w * dw  # 物体宽度的宽度比(相当于 w/原图w)
    y = y * dh  # 物体中心点y的坐标比(相当于 y/原图h)
    h = h * dh  # 物体宽度的宽度比(相当于 h/原图h)
    return (x, y, w, h)  # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]


# year ='2012', 对应图片的id(文件名)
def convert_annotation(image_id):
    '''
    将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,
    通过对其解析,然后进行归一化最终读到label文件中去,也就是说
    一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去
    labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个
    '''
    # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件
    in_file = open('Annotations/%s.xml' % (image_id), encoding='utf-8')
    # 准备在对应的image_id 中写入对应的label,分别为
    #     
    out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')
    # 解析xml文件
    tree = ET.parse(in_file)
    # 获得对应的键值对
    root = tree.getroot()
    # 获得图片的尺寸大小
    size = root.find('size')
    # 如果xml内的标记为空,增加判断条件
    if size != None:
        # 获得宽
        w = int(size.find('width').text)
        # 获得高
        h = int(size.find('height').text)
        # 遍历目标obj
        for obj in root.iter('object'):
            # 获得difficult
            difficult = obj.find('difficult').text
            # 获得类别 =string 类型
            cls = obj.find('name').text
            # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过
            if cls not in classes or int(difficult) == 1:
                continue
            # 通过类别名称找到id
            cls_id = classes.index(cls)
            # 找到bndbox 对象
            xmlbox = obj.find('bndbox')
            # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            print(image_id, cls, b)
            # 带入进行归一化操作
            # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']
            bb = convert((w, h), b)
            # bb 对应的是归一化后的(x,y,w,h)
            # 生成 calss x y w h 在label文件中
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


# 返回当前工作目录
wd = getcwd()
print(wd)

for image_set in sets:
    '''
    对所有的文件数据集进行遍历
    做了两个工作:
    1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位
    2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去
         最后再通过直接读取文件,就能找到对应的label 信息
    '''
    # 先找labels文件夹如果不存在则创建
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    # 读取在ImageSets/Main 中的train、test..等文件的内容
    # 包含对应的文件名称
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    # 打开对应的2012_train.txt 文件对其进行写入准备
    list_file = open('data/%s.txt' % (image_set), 'w')
    # 将对应的文件_id以及全路径写进去并换行
    for image_id in image_ids:
        list_file.write('data/images/%s.png\n' % (image_id))
        # 调用  year = 年份  image_id = 对应的文件名_id
        convert_annotation(image_id)
    # 关闭文件
    list_file.close()

# os.system(‘comand’) 会执行括号中的命令,如果命令成功执行,这条语句返回0,否则返回1
# os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt")
# os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

需要注意是是对名称的修改,比如标记名称等等,路径如果取名没有错的话,路径无需修改。
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第7张图片
最后会发现在Power_data文件下创建一个data数据集,其中labels即储存处理好的数据文件
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第8张图片
数据集拿到之后,就可以进行对数据的训练。
目标检测YOLOv5开源代码项目调试实战(数据处理模型训练)_第9张图片
注意两点:一个就算数据集的图片和标注的名称一定要对应。第二个就算数据集的图片和标注需要放在同一个文件夹下面。

你可能感兴趣的:(视觉学习(目标检测),python,python,计算机视觉)