- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- SAM应用:医学图像和视频中的任何内容分割中的基准测试与部署
烧技湾
AI&ComputerVisionSAMMED2SAN医学图像分割分割一切
医学图像和视频中的任何内容分割:基准测试与部署目录摘要:一、引言1.1SAM2在医学图像和视频中的应用二.结果2.1数据集和评估协议2.2二维图像分割的评估结果三讨论四局限性和未来的工作五、方法5.1数据来源和预处理5.2微调协议5.3评估指标总结关键字:SAM、分割一切基础模型、医学图像、视频、多模态最近医学分割模型发展迅速,基于SAM的医学图像处理得到了进一步的发展。为了追踪医学图像处理的最新
- simpleITK - Registration - SimpleITKv4配准 配准改进
努力减肥的小胖子5
图像配准simpleITKregistration
文章目录通过配准改进配准:手动定位自动定位半自动定位加载数据手动地标定位配准(手动地标定位)家庭作业:半自动地标定位配准(半自动地标定位)回答以下问题:通过配准改进配准:此笔记故意缺少代码,这是使用SimpleITK的家庭作业作业的示例。医学图像中解剖地标或基准标记的定位是一项常见任务,既用于初始化两幅图像之间基于强度的配准,也用于计算机辅助干预中图像空间和物理空间之间的配准。在此笔记本中,我们的
- 图像信息的配准和融合
数据分析能量站
图像处理class
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- 第八章 医学图像的配准和融合
数据分析能量站
图像处理图像
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- RadioTransformer:用于视觉注意力引导疾病分类的级联全局焦点Transformer
托比-马奎尔
医学图像处理Transformer变形transformer深度学习人工智能
利用放射科医生的注视模式并模拟他们的视觉认知行为,以在胸部X光片上进行疾病诊断。放射科医生等领域专家依靠视觉信息来解释医学图像。另一方面,视觉解释有挑战性,但是视线跟踪已被用来捕获领域专家的观看行为,从而深入了解视觉搜索的复杂性。但即使是那些依赖注意力机制的框架,也不会利用这种丰富的领域信息来进行诊断。RadioTransformer通过学习放射科医生的视觉搜索模式,在级联的全局焦点Transfo
- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- nnUNet V2修改网络——替换为U-Net V2
w1ndfly
nnU-NetV2修改网络人工智能深度学习计算机视觉卷积神经网络机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。U-NetV2是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始U-Net,U-NetV2在多个数据集上表现出更
- ACC-UNet网络学习笔记(2023 MICCAI )
刘若里
论文阅读网络学习笔记
摘要1.背景说明近十年来的变化——ViT的引入改变了CV的基本模式。同样,医学图像领域也发生了一样的变化,最具影响力的网络结构——U-Net已和Transformer相结合而被重新设计。最近,卷积模型在视觉中的有效性正在被重新研究,比如一些开创性的工作——ConvNeXt,它将ResNet的性能提升到了SwinTransformer一样甚至更高的水平!2.原因&目的由此获得灵感,Author打算改
- 一切皆是映射:强化学习在医疗诊断中的应用:挑战与机遇
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《一切皆是映射:强化学习在医疗诊断中的应用:挑战与机遇》关键词强化学习,医疗诊断,图像识别,数据预处理,算法优化摘要随着医疗技术的发展,医疗诊断的准确性和效率越来越受到关注。强化学习作为机器学习的一种重要方法,已经在多个领域中展示了其强大的学习能力和适应性。本文将探讨强化学习在医疗诊断中的应用,包括其在医学图像分析、实验室诊断和个性化治疗等方面的优势与挑战。通过详细分析强化学习的基本概念、架构设计
- CTK 库教程:从入门到进阶
江奎钰
CTK库教程:从入门到进阶CTKAsetofcommonsupportcodeformedicalimaging,surgicalnavigation,andrelatedpurposes.项目地址:https://gitcode.com/gh_mirrors/ct/CTK1.项目介绍CTK(CommonToolkit)是一个专注于生物医学图像计算的支持库。它的目标是提供那些现有工具包未涵盖的功能
- 【影像组学pyradiomics学习笔记】pyradiomics安装及介绍
Gu104
学习笔记
pyradiomics是一个开源的python包,用于医学图像的影像组学特征提取。官方网址:https://pyradiomics.readthedocs.io/en/latest/index.html
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- 医学顶会 MICCAI‘24 | LKM-UNet: 大型内核视觉 Mamba UNet 用于医学图像分割
小白学视觉
医学图像处理论文解读MICCAI深度学习医学图像顶会医学图像处理论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:LKM-UNet:LargeKernelVisionMambaUNetforMedicalImageSegmentationLKM-UNet:大型内核视觉MambaUNet用于医学图像分割作者:JinhongWang,JintaiChen,DannyChen,JianWu源码链接:
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- VM-UNet: 基于Vision Mamba UNet的医学图像分割项目推荐
翟洁英
VM-UNet:基于VisionMambaUNet的医学图像分割项目推荐VM-UNet项目地址:https://gitcode.com/gh_mirrors/vm/VM-UNet1.项目基础介绍和主要编程语言VM-UNet是一个基于VisionMambaUNet架构的开源项目,专门用于医学图像分割。该项目的主要编程语言是Python。VM-UNet结合了状态空间模型(StateSpaceModel
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- 大数据最新医学图像分割 3D nnUNet全流程快速实现_医学图像分割步骤
2401_84182020
程序员大数据
第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入gitclonehttps://github.com/MIC-DKFZ/nnUNet.git,将nnUNet的代码下载到这个位置第二步:终端内定位到下载的nnUNet文件夹cdnnUNet,或者直接在对应位置打开终端第三步:开始安装,pipinstall-e.2数据整理2.1数据存放形式首先,nnUNet有自己的一套数据文件夹的
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- Python小项目:利用U-net完成细胞图像分割
利用U-Net完成细胞图像分割的详细指南在生物医学领域,细胞图像分割是一个关键步骤,能够帮助研究人员分析细胞结构和功能。U-Net作为一种强大的卷积神经网络结构,广泛应用于医学图像分割任务。本文将详细介绍如何利用U-Net完成细胞图像分割项目,涵盖从数据准备到模型部署的各个步骤。项目步骤概览数据准备数据预处理构建U-Net模型训练模型模型评估图像分割结果可视化调优和优化部署和应用1.数据准备收集数
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- cornerstonejs介绍
花花进修
DICOM医学影像查看器html5javascriptnpmyarn
Cornerstone.js是一个用于医疗成像应用程序的开源JavaScript库。它专门设计用于在Web浏览器中处理和显示DICOM(数字成像和通信在医学领域)图像。Cornerstone.js为开发者提供了强大的工具,可以轻松构建功能丰富的医学图像查看器,广泛应用于放射学、病理学、超声成像等领域。特点高性能图像渲染:支持大尺寸医学图像的快速渲染,包括CT扫描、MRI、X光片等。利用GPU加速(
- Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制
AICurator
Unet改进专栏深度学习神经网络unet语义分割
本文内容:在不同位置添加CPCA注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- fpga图像处理实战-白色顶帽变换
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
白色顶帽白色顶帽(WhiteTop-HatTransform),又称顶帽变换,是一种形态学操作,主要用于突出图像中比周围区域更亮的细节。它特别适用于从复杂背景中提取亮区域或对象。白色顶帽操作在图像处理中的应用广泛,特别是在医学图像、工业检测和其他需要增强特定亮区域的应用中。基本原理白色顶帽变换是通过将图像进行开运算(OpeningOperation)后,再从原始图像中减去开运算的结果来实现的。开运
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb