昨天的文章我们已经讲过了GAN及其算法的逻辑,以及GAN的模型结构和pytorch的实现代码
(我还是说到做到了,今天我又来更新了,尽管还是没人看)
今天我们稍微加点难度,昨天我们生成的数据是随机的,所以有的人就说了,我们能不能让这个GAN想生成什么就生成什么啊,答案是,肯定的,能!!!!CGAN就是能完成,好的话不多说,我们开整。
CGAN中的C是什么意思啊?C = Conditional,也是条件的意思,所CGAN也叫做条件生成对抗网络。
仍然是分成了两个部分:生成器和判别器,但是看过刚刚GAN的那片文章的兄弟们应该不能发现,生成器和判别器的输入多了一个y,这个y是什么呢?
其实这个y就是我们所说的condition,因为我们还是在mnist上做的实验,所以这个y是就0-9的一个one-hot向量,我们把这个y和原来的z concat到一起当成一个新的输入数据送给生成器,整个数据变化的维度和之前也一样,还是全连接网络,我们就不过多的赘述了。
1.随机的噪声concat一个随机的0-9的one-hot向量,通过生成器,生成一个N*784的数据,判别器去判定这个N*784和0-9的one-hot向量concat到一起的数据,让最后的N*1的数据的数值去接近1(也就是期望生成器生成的数据能够骗过判别器,让判别器以为这是一个真的数据),以此来优化生成器,让判别器可以骗过生成器
2.同时给定判别器一个真实的数据(我们下面给出的例子是mnist数据集,所以是一个N*28*28的数据,我们会把它reshape成N*784的数据),再给它concat一个它真实的标签的one-hot向量,此时我们还是希望判别器给出的结果接近于1,同时也希望此时判别器判定刚刚生成的数据的值接近于0,此时在优化判别器,让判别器去甄别生成器的作假能力。
3.至此,生成器和判别器就开始对抗起来了,所谓魔高一尺,道高一丈,小偷就是在警察越来越严厉的时候,他们才有新的骗术。警察也才能更加的所向披靡。
import argparse
import os
import numpy as np
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=512, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(opt.latent_dim + opt.n_classes, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, noise, labels):
# Concatenate label embedding and image to produce input
gen_input = torch.cat((self.label_emb(labels), noise), -1)
img = self.model(gen_input)
img = img.view(img.size(0), *img_shape)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential(
nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 1),
)
def forward(self, img, labels):
# Concatenate label embedding and image to produce input
d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1)
validity = self.model(d_in)
return validity
# Loss functions
adversarial_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"./data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
# Sample noise
z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
# Get labels ranging from 0 to n_classes for n rows
labels = np.array([num for _ in range(n_row) for num in range(n_row)])
labels = Variable(LongTensor(labels))
gen_imgs = generator(z, labels)
save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = Variable(labels.type(LongTensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
# Generate a batch of images
gen_imgs = generator(z, gen_labels)
# Loss measures generator's ability to fool the discriminator
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Loss for real images
validity_real = discriminator(real_imgs, labels)
d_real_loss = adversarial_loss(validity_real, valid)
# Loss for fake images
validity_fake = discriminator(gen_imgs.detach(), gen_labels)
d_fake_loss = adversarial_loss(validity_fake, fake)
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)
还是和以前一样,随便训练了下。
可以看到,生成器可按照我们想要生成的数据去生成数据了,就是变得听话了,借用东北话,只能说它是个好小子了。
明天我们就开始再加深一点难度了,来讲一讲pix2pix
至此,敬礼,salute!!!!
老规矩,上咩咩