- 体育数据系统是怎么开发的
sanx18
信息可视化
体育数据系统的开发通常包括多个环节,涉及数据采集、处理、存储和展示等方面。下面是开发一个体育数据系统的主要步骤:1.需求分析与规划确定目标:明确系统的目标,比如实时比赛数据跟踪、球员统计、比赛分析等。确定用户群体:不同的用户群体(如教练、球员、分析师、媒体等)可能有不同的需求。功能规划:确定系统需要的功能,如数据采集、可视化展示、数据报表生成、实时更新等。2.数据采集与接口设计数据来源:体育数据可
- Linux系统如何排查端口占用
程序猿000001号
linux运维服务器
如何在Linux系统中排查端口占用在Linux系统中,当您遇到网络服务无法启动或响应异常的情况时,可能是因为某个特定的端口已经被其他进程占用。这时,您需要进行端口占用情况的排查来解决问题。本文将介绍几种常用的命令行工具和方法,帮助您快速定位并解决端口占用的问题。1.使用netstat命令netstat是一个网络统计工具,它可以显示网络连接、路由表、接口统计等信息。要检查端口占用情况,可以使用以下命
- 【数据挖掘】NumPy
dundunmm
数据挖掘数据挖掘numpy人工智能
NumPy是Python中一个用于进行科学计算的基础库,它提供了高效的数组操作和数学运算功能。在数据挖掘中,NumPy被广泛应用于数据预处理、特征工程、算法实现等方面,尤其是在处理大规模数据时,因其提供的高效运算和矩阵操作的能力,极大地提升了数据处理的效率。NumPy的主要功能和在数据挖掘中的应用高效的多维数组(ndarray):NumPy提供了一个强大的多维数组对象ndarray,可以存储和处理
- 当x趋于零时,零乘以无穷的极限等于多少
蓝桉802
考研
当x趋于零时,零乘以无穷的极限是未定义。在数学中,0乘以无穷大(0×∞)是一个未定义的表达式,因为它涉及到两个相互矛盾的概念:0乘以任何有限数都等于0,而无穷大乘以任何非零数都应该是无穷大。因此,我们不能确定0乘以无穷大应该是0还是无穷大,所以它被认为是未定义的。为了更好地理解这个问题,我们可以考虑一个极限的例子。假设我们有两个函数f(x)和g(x),其中f(x)趋于0,而g(x)趋于无穷大。
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- 量化交易如何利用算法模型进行股票筛选?其选股策略包含哪些方面?
量化问财
量化投资程序化炒股券商API算法人工智能python
前言量化交易是一种基于数学模型、统计分析和计算机算法的交易方式,通过系统化的方法筛选股票并进行投资决策。与传统交易依赖主观判断不同,量化交易强调数据驱动和模型优化,能够更高效地捕捉市场机会并控制风险。以下是量化交易通过算法模型选择股票的核心逻辑和方法。一、量化交易选股的核心逻辑量化交易选股的核心在于通过数学模型和算法,从海量数据中挖掘出具有潜在收益的股票。其逻辑主要基于以下几个方面:数据驱动的决策
- 【第三天】零基础学习量化基础代码分析-持续更新
Long_poem
学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录记录量化基础代码总览引言基本概念量化投资伪代码示例:量化投资模型框架总结每日-往期回看第一天零基础学量化基础知识点总览-持续更新第二天零基础学习量化基础代码总览-持续更新第三天零基础学习量化基础代码分析-持续更新记录量化基础代码总览引言量化投资是一种基于数学模型和计算机算法来制定投资策略的方法。通过分析历史数据,发现市场规律,
- AI笔记——浅谈发展历程
Bqiuer
AIAI笔记人工智能ai
2023年,要说最让人震惊的热点,无疑就是AI技术的大爆发!从1950年的“图灵测试”标志着人工智能雏形的诞生,一些最顶尖的技术团队、技术学科进行研究,到如今几十年的时间。一、AI的历史进程人工智能(ArtificialIntelligence,AI)的历史进程可以追溯到上世纪50年代。1950年代-1960年代:起步阶段1950年,英国数学家艾伦·图灵提出了“图灵测试”,这是第一个旨在检验机器智
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- PCA主成分分析降维算法及其可视化(附完整版代码)
Jason_Orton
算法机器学习数据挖掘人工智能matlab
一.PCA的介绍PCA(PrincipalComponentAnalysis)是一种数据降维技术,旨在将多维指标转换为少数几个综合指标。在统计学中,PCA是简化数据集的一种方法,通过线性变换将数据映射到新的坐标系中。在新的坐标系中,第一主成分捕获数据投影的最大方差,第二主成分捕获第二大方差,依此类推。主成分分析常用于减少数据集的维度,同时保留对方差贡献最大的特征。这是通过保留低阶主成分、忽略高阶主
- 欧几里得算法
王嘉俊925
算法算法c++
欧几里得算法(辗转相除法)欧几里得算法(EuclideanAlgorithm)是一种高效计算两个非负整数最大公约数(GCD)的方法。它不仅简单易懂,而且在数学和计算机科学中有着广泛的应用。以下是对该算法的深入讲解,包括其原理、扩展、时间复杂度分析以及实际应用。1.算法原理欧几里得算法的核心思想基于以下数学原理:辗转相除法:对于两个整数a和b(a≥b)(a\geqb)(a≥b),它们的最大公约数gc
- Redis缓存预热、缓存穿透、缓存击穿、缓存雪崩
辄也
缓存redis数据库
一、缓存预热1.什么是缓存预热?当系统上线时,缓存内还没有数据,如果直接提供给用户使用,每个请求都会穿过缓存去访问底层数据库,如果并发大的话,很有可能在上线当天就会宕机,因此我们需要在上线前先将数据库内的热点数据缓存至Redis内再提供出去使用,这种操作就成为"缓存预热"。2.问题排查请求数量较高主从之间数据吞吐量较大,数据同步操作频度较高3.解决方案1.日常例行统计数据访问记录,统计访问频度较高
- TensorFlow基础架构
humbinal
tensorflow
处理结构计算图纸Tensorflow首先要定义神经网络的结构,然后再把数据放入结构当中去运算和training.处理结构因为TensorFlow是采用数据流图(dataflowgraphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数
- 河南省统计年鉴面板数据2000-2022的指标说明
用数据说话用数据决策
数据库
变量行政区划代码年份地区经度纬度所属省份长江经济带综合-行政区划-市级个数(个)综合-行政区划-市级个数(个)-省辖市个数(个)综合-行政区划-市级个数(个)-县级市个数(个)综合-行政区划-县级个数(个)综合-行政区划-市辖区个数(个)综合-行政区划-镇个数(个)综合-行政区划-乡个数(个)综合-行政区划-街道办事处(个)综合-行政区划-居民委员会(个)综合-行政区划-村民委员会(个)综合-基本
- 上市公司财务报告数据大全1990-2022年度1387指标变量的详细说明参考
用数据说话用数据决策
动态规划数据结构
Symbol[证券代码]-以证券交易所公布的证券代码为准EndDate[统计截止日期]-YYYY-MM-DD,前四位表示会计报表公布年度StateTypeCode[报表类型]-1=合并会计报表;2=母公司会计报表Area[地区]-1、国内2、国外ApplyTypeCode[申请类型编码]-S5201=已申请;S5202=已获得;S5203=已授权;S5204=截至报告期末累计获得;S5205=截止
- 使用vim做笔记-vimwiki
vimwiki
前两天刚写了篇自己的实践过程,目的是在vim中搭建一个方便写LaTeX文档的环境,现在又来搞一个vimwiki,这是为啥呢首先LaTeX确实很强大,但同时也是更专注于数学相关的排版;如果我用来在边听些网课边做笔记,这想必是极好的,因为课程本身是系统的,连续的,最后出来的笔记也比较完整。但同时我感觉我还需要搭建一个自己的知识库,然后我就看到了VimWiki,能够用类似wiki一样的方式组织自己各种或
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- Ozon Tech Challenge 2020 (Div.1 + Div.2, Rated) C. Kuroni and Impossible Calculation(鸽巢原理+数学)
为什么他们cf写的这么快
数学
题目链接思路:首先我们都明白一个式子就是如果(a-b)%m0,那么我们是不是都知道a%mb%m,又因为如果n>m的话%m的取值就在【0,999】内,也就是肯定会存在两个数是重合的(这就是鸽巢原理),那么n大于m的时候%m不就是0了,剩下的暴力就行了。#includeusingnamespacestd;typedeflonglongll;constintmaxn=2e5+1;constllinf=1
- 机器学习数学基础:32.复本信度
@心都
机器学习算法人工智能
复本信度(Parallel-FormsReliability)深度详解教程专为小白打造,零基础也能轻松掌握一、深度解读复本信度复本信度,也被称为“平行测验信度”,其核心要义是借助两个虽然不同但在各方面等效的测验版本,对同一批受测者进行多次测量,然后对测量结果的一致性程度展开评估。从本质上讲,它是衡量测验稳定性的重要指标,能够有效减少因题目重复出现而致使受测者产生练习或记忆效应,进而影响测验结果真实
- ms-swift 3.x和2.x中参数不一致的暗坑
Jumbo星
swift开发语言ios
虽然ms-swift3.x发布也有一段时间官方文档也对使用上参数的变动做了一些说明ReleaseNote3.0—swift3.2.0.dev0文档但是这个说明基本上都是说某些参数的命名发生了变化对于一些参数命名没变但默认值/使用方式的变化暂时还没给出说明/统计文档我这边基于工作中遇到的一些坑,整理了部分,希望大家在使用的时候留意。注意,在这个文档里官方已给出的参数差异我在这不做赘述分析,只展示我个
- 常用数学公式
wave_sky
学习
等价无穷小代换sinx~x,arcsinx~x,tanx~x,arctanx~x,1-cosx~12x2\dfrac12x^221x21−cosax=ax221-cos^ax=\dfrac{ax^2}{2}1−cosax=2ax2ex−1e^x-1ex−1~x,ax−1a^x-1ax−1~xlnaln(1+x)~x(1+x)a−1(1+x)^a-1(1+x)a−1~ax(a≠0)x-sinx~16
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 数据结构2---------->时间复杂度
free-elcmacom
数据结构
一、算法的效率:1.如何正确的衡量一个算法的好坏呢?请看下面的斐波拉契数列:我先简单介绍一下斐波拉契数列:斐波那契数列(黄金分割数列),它是由数学家莱昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……即这个数列从第三项开始,每一项都等于前两项之和。longlongFib(in
- Svelte 最新中文文档教程(22)—— 自定义元素
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- JS宏进阶:浅谈曲线回归
jackispy
JS宏进阶回归数据挖掘人工智能javascript
曲线回归是一种统计学方法,用于研究两个或多个变量之间的非线性关系,并找到最能拟合数据点的曲线函数形式。与线性回归不同,曲线回归适用于描述那些不是直线性的变量关系。通过曲线回归,可以建立变量之间的非线性数学模型,用于预测和解释各种实际现象。一、基本概念定义:曲线回归是指对于非线性关系的变量进行回归分析的方法。曲线回归方程一般是以自变量的多项式或其他非线性函数形式表达因变量。目的:曲线回归的主要目的是
- 【算法系列】有趣的计数排序
binbinxyz
算法排序算法数据结构java
文章目录计数排序(CountingSort)详解一、基本思想1.基本原理2.适用场景3.稳定性二、实现步骤1.统计频率2.累积频率3.构建输出数组4.复制回原数组三、代码实现四、时间复杂度分析五、空间复杂度分析六、计数排序的优缺点七、总结计数排序(CountingSort)详解计数排序(CountingSort)是一种非比较型排序算法,适用于整数排序。它通过计算每个元素出现的次数来确定它们在输出数
- python曲线回归小案例教程
jackispy
python回归开发语言
一、曲线回归的定义曲线回归是一种统计方法,用于建立自变量(独立变量)和因变量(依赖变量)之间的非线性关系模型。与线性回归不同,线性回归假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述数据点的趋势;而曲线回归则允许这种关系是非线性的,可能表现为曲线、抛物线、指数、对数或其他复杂的数学形式。其主要特征如下:非线性关系:曲线回归适用于那些不能用直线来充分描述的数据关系。它允许模型以曲线形式
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Accord.NET框架功能介绍
绀目澄清
Accord.NETAccord.NET
机器学习组件Accord.NET框架功能介绍1.基本功能与介绍Accord.NET为.NET应用程序提供了统计分析、机器学习、图像处理、计算机视觉相关的算法。Accord.NET框架扩展了AForge.NET框架,提供了一些新功能。同时为.NET环境下的科学计算提供了一个完整的开发环境。该框架被分成了多个程序集,可以直接从官网下载安装文件或者使用NuGet得到。可以参考以下链接:https://g
- chatgpt赋能python:用Python发送短信的简单方法
u012804784
ChatGptpythonchatgpt开发语言计算机
用Python发送短信的简单方法在今天的数字时代,没有任何事情比即时通讯更方便。然而,短信仍然是一种极为有用的通信方式。实际上,正如您所看到的,本文将告诉您如何使用Python在几步内轻松地发送短信。发送短信的三种方法要发送短信,您有三种主要方法:使用SMSAPI-这是一种专为发送短信而设计的API,您可以将其集成到代码中。SMSAPI允许您访问专业工具,例如发送统计和交付报告等,但通常需要收费。
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。