python必备库-画图神器Matplotlib手把手教学

文章目录

  • 1.安装方法
  • 2.用好官网的例子
    • 最简单的应用-折线图
    • 添加注释的方法
    • 柱状图-Bar Label
    • 折线图之CSD

听说点进蝈仔帖子的都喜欢点赞加关注~~
python必备库-画图神器Matplotlib手把手教学_第1张图片

官网地址:
https://matplotlib.org/

可以看看docs
python必备库-画图神器Matplotlib手把手教学_第2张图片
官网就相当详细了,可以直接参考官网。

1.安装方法

pip安装:

pip3 install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

conda安装:

conda install matplotlib

测试是否成功:

import numpy as np 
from matplotlib import pyplot as plt 
 
x = np.arange(1,11) 
y =  2  * x +  5 
plt.title("Matplotlib demo") 
plt.xlabel("x axis caption") 
plt.ylabel("y axis caption") 
plt.plot(x,y) 
plt.show()

成功出现下图就可以动手改造了。
python必备库-画图神器Matplotlib手把手教学_第3张图片

2.用好官网的例子

最简单的应用-折线图

fig, ax = plt.subplots()  # Create a figure containing a single axes.
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]);  # Plot some data on the axes.

python必备库-画图神器Matplotlib手把手教学_第4张图片

添加注释的方法

fig, ax = plt.subplots(figsize=(5, 2.7))

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2 * np.pi * t)
line, = ax.plot(t, s, lw=2)

ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
            arrowprops=dict(facecolor='black', shrink=0.05))

ax.set_ylim(-2, 2);

python必备库-画图神器Matplotlib手把手教学_第5张图片

柱状图-Bar Label

import matplotlib.pyplot as plt
import numpy as np
N = 5
menMeans = (20, 35, 30, 35, -27)
womenMeans = (25, 32, 34, 20, -25)
menStd = (2, 3, 4, 1, 2)
womenStd = (3, 5, 2, 3, 3)
ind = np.arange(N)    # the x locations for the groups
width = 0.35       # the width of the bars: can also be len(x) sequence
fig, ax = plt.subplots()
p1 = ax.bar(ind, menMeans, width, yerr=menStd, label='Men')
p2 = ax.bar(ind, womenMeans, width,
            bottom=menMeans, yerr=womenStd, label='Women')
ax.axhline(0, color='grey', linewidth=0.8)
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.set_xticks(ind, labels=['G1', 'G2', 'G3', 'G4', 'G5'])
ax.legend()
# Label with label_type 'center' instead of the default 'edge'
ax.bar_label(p1, label_type='center')
ax.bar_label(p2, label_type='center')
ax.bar_label(p2)
plt.show()

正常run会出现下图
python必备库-画图神器Matplotlib手把手教学_第6张图片

折线图之CSD

计算两个信号的交叉谱密度Compute the cross spectral density of two signals

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))                 # white noise 1
nse2 = np.random.randn(len(t))                 # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt   # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt   # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

python必备库-画图神器Matplotlib手把手教学_第7张图片

你可能感兴趣的:(算法,Python相关,人工智能,python,机器学习,r语言)