04_ARMv8指令集-运算指令集

  • 加法指令ADD、ADDS、ADCS
  • 减法指令SUB、SUBS、SBC,SBCS,CMP
  • 位操作AND, ANDS, ORR、EOR、BFI、UBFX、SBFX

1. 加法指令

加法指令有ADD、ADDS、ADCS。 ADD一般性加法指令,ADCS带C标志位运算的加法指令,ADDS影响C标志位的加法运算。

1.1 ADD

a = a + b, 没有进位标志,也不会利用进位标志

  • ADD (extended register) :

    • Define: ADD , , , { {#}}
    • Example1: add x0, x1, x2 ( x0 = x1 + x2 )
    • Example2: add x0, x1, x2, lsl #5( x0 = x1 + (x2 << 5) )
  • ADD (immediate):

    • Define: ADD , , #{, lsl <#shift>}, note shift supports #0 and #12 only.
    • Example1: add x1, x2, #8 (x1 = x2 + 8)
    • Example2: add x1, x2, #8, lsl #12 ( x1 = x2 + (8 << 12) )
  • ADD (shifted register):

    • Define: ADD , , {, #} , note #amount range 0 to 63
    • Note: LSL when shift = 0, LSR when shift = 1, ASR when shift = 2
    • Example1: add x1, x2, x3, asr #2

1.2 ADDS

(a,C) = a + b, 带进位标志的加法,用法和ADD一样

1.3 ADCS

(a,C) = a + b + C,带进位标志的加法,且需要加上C标志位,用法和ADD一样。 注意,如果加法溢出的时候C标志位会置位为1,比如,a = 0xFFFFFFFFFFFFFFFF, b = 1,此时,加法溢出,C置位1。

1.4 ADR

a = b + PC, 当前程序的PC值加上给定的地址偏移

  • ADR

    • Define: ADR ,
    • Note, no 32-bit
    • Note,
    • Example01: adr x1, #25

1.5 关于查看C flag的方法

方法1:使用MSR/MRS指令

    msr NZCV, xzr       // clear the NZCV
    mrs x0, NZCV     // 查看NZCV寄存器,NZCV在高位28 - 32 bits

方法2:使用ADCS的+C特性

adcs x0, zxr, xzr 让两个0寄存器相加 0+0+c就可以得到C标志位的值

2. 减法指令

减法指令包含SBC,SBCS。请参考ARMv8手册,C6.2.231 C6-1299

2.1 SUB

a = a - b, 没有进位标志,也不会利用进位标志。使用方法和ADD一致。

2.2 SUBS

(a,N) = a - b, 会置标志位N。使用方法和SUBS一致,减成负数的时候,其余位置补1。

2.3 SBC

a = a - b - 1 + C

  • SBC (Subtract with Carry):

    • Define: SBC , ,
    • Example: sbc x0, xzr, xzr

2.4 SBCS

(a, N) = a - b - 1 + C, 如果减出负数的话,N会被置位

  • SBC (Subtract with Carry, setting N flag):

    • Define: SBCS , ,
    • Example: sbcs x0, xzr, x1

2.5 CMP

比较指令,实际上也使用SBC实现的, cmp x1, x2

  • 若x1 > x2, NCZV = 0100
  • 若x1 = x2, NCZV = 0110
  • 若x1 < x2, NCZV = 1000

Define 1: CMP , {, {#}}

Define 2: CMP , #{, }

Define 3: CMP , {, #}

Example:

* The function cmp_and_return_test:

* if a >= b return 1

* if a < b return 0

test_cmp:
    cmp x0, x1               // if x0 >= x1,  C is 1; if x0 < x1 C is 0
  adcs x0, xzr, xzr // 0 + 0 + C

3. 位操作

位操作包含AND, ANDS, ORR、EOR、BFI、UBFX、SBFX, 分别是与、与置位标志位、或、异或、插入、无符号提取、有符号提取。

3.1 ORR

a = a | b;

Define 1: ORR , , #

Define 2: ORR , , {, #}

test_orr:
    // ORR test  0xAA oor 0x55 = 0xFF
    //           0xFF oor 0x00 = 0xFF
    //           0xFF oor 0xFF = 0xFF
    //           0x00 oor 0x00 = 0x00
    mov x0, xzr
    mov x1, #0xAA
    mov x2, #0x55
    orr x1, x1, x2

    mov x1, #0xFF
    orr x1, x1, xzr

    mov x1, #0xFF
    orr x1, x1, x1

    orr x1, xzr, xzr

    ret



test_ubfx:
    // x1: 0000 0000 0000 0000  ->  0000 0000 0000 1111
    //                     ^
    //                     |
    // x2:      0000 0000 1111 0000
    mov x1, xzr
    mov x2, #0x00F0
    ubfx x1, x2, #0x4, #0x4

    // x1: 0000 0000 0000 0000  ->  1111 1111 1111 1111
    //                     ^
    //                     |
    //          1000 0000 1111 0000
    mov x1, xzr
    mov x2, #0x80F0

3.2 EOR

a = a ^ b;

Define 1: EOR , , #

Define 2: EOR , , {, #}

test_eor:
    // test 2 exchange the value x1 = 0x07, x2 = 0xAA
    // using the orr, just use two register.
    // x1 = x1^x2
    // x2 = x2^x1
    // x1 = x1^x2
    ldr x1, =0x07
    ldr x2, =0xAA
    eor x1, x1, x2
    eor x2, x2, x1
    eor x1, x1, x2
    ret

几个EOR的小技巧:

  • 翻转某些位: 比如把右数第0位到第3位翻转: 1010 1001 ^ 0000 1111 = 1010 0110
  • 交换数值: a=a^b; b=b^a; a=a^b,不借助第三个变量
  • 置0: a^a
  • 判断相等 a^b == 0

3.3 AND

3.3.1 AND

a = a & b;

Define 1: AND , , #

Define 2: AND , , {, #}

    msr NZCV, xzr       // clear the NZCV
    ldr x1, =0xAA
    ldr x2, =0x0
    // test AND, no Z flag. x1 = x1&x2
    and x1, x1, x2
    mrs x0, NZCV

3.3.2 ANDS

(a, z) = a & b. 如果a和b与的结果为0,z flag置位

    // test ANDS, z flag, if the result is 0, Z is 1
    msr NZCV, xzr       // clear the NZCV
    mov x0, xzr
    ldr x1, =0xAA
    ands x1, x1, x2
    mrs x0, NZCV

3.4 BFI

Define 1: BFI , , #, #

从Xn寄存器里面从低位开始,插入到Xd寄存器从#开始,#长度。

读取Xn寄存器的低位开始计算,插入到Xd寄存器从#开始,#长度。这个没有办法控制Xd的位置,只能从Xd的最低位开始。

test_bfi:
    // 0000 0000 0000 1010
    //                 |
    //                 V
    //           0000 0000 0000 0000  ->  0000 1010 0000 0000
    ldr x1, =0x000A
    mov x2, xzr
    bfi x2, x1, #0x8, #0x4

    // 0000 0000 0000 1010
    //                 |
    //                 V
    //           0000 0101 0000 0000  ->  0000 1010 0000 0000
    ldr x1, =0x000A
    mov x2, #0x0500
    bfi x2, x1, #0x8, #0x4

    ret

3.5 UBFX/SBFX

Define: UBFX , , #, #

Define: SBFX , , #, #

读取Xn寄存器的#开始,#长度开始计算,替换到Xd寄存器低位的位置#长度。这个没有办法控制Xd的位置,只能从Xd的最低位开始。 SBFX是有符号的,替换之后Xd 其他位0变为1。

    // x1:      0000 0000 1111 0000
    //                     |
    //                     V
    // x2: 0000 0000 0000 0000  ->  0000 0000 0000 1111

    mov x1, #0x00F0
    mov x2, xzr
    ubfx x2, x1, #0x4, #0x4

    //          1000 0000 1111 0000
    //                     |
    //                     V
    // x1: 0000 0000 0000 0000  ->  1111 1111 1111 1111
    mov x1, #0x80F0
    mov x2, xzr
    sbfx x2, x1, #0x4, #0x4

04_ARMv8指令集-运算指令集_第1张图片

Ref

[1] Arm Armv8-A Architecture Registers-NZCV, Condition Flags

[2] ARM Cortex-A Series Programmer's Guide for ARMv8-A - Arithmetic and logical operations

[2] ARM架构(三)ARMv8 Programm Model Overview

[3] [ARMv8官方手册学习笔记(三):寄存器](

你可能感兴趣的:(arm64)