Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
和Unique PathsI差不多,不过增加了一个判断条件,如果有障碍的话,那么这个格就填写0,表示0个路径。
不过做这道题还是有点麻烦的:
1 需要初始化动态规划法表的第一行
2 每次需要更新表的第一个格
不过也可以简单点,如果使用额外的一个存储空间,可以少一个判断条件。LeetCode上有程序是这么写的。
不过我这里是不使用额外空间,增加一个判断(程序中注意的地方)就可以了,从简洁度来说,好像也差不多。看各人喜欢了。
class Solution { public: //头脑考虑问题不够全面就会有bug,需要严谨的逻辑思维 int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int r = obstacleGrid.size(); if (r < 1) return 1; int c = obstacleGrid[0].size(); vector<int> table(c); if (obstacleGrid[0][0] == 1) return 0; else table[0] = 1; for (int i = 1; i < c && obstacleGrid[0][i] != 1; i++) { table[i] = 1; } for (int i = 1; i < r; i++) { //注意:如果是只有单列的时候,每列需要初始化 //注意:不等于1的时候是填回上一列的值,并非初始化为1 if (obstacleGrid[i][0] == 1) table[0] = 0; for (int j = 1; j < c; j++) { if (obstacleGrid[i][j] != 1) table[j] += table[j-1]; else table[j] = 0; } } return table[c-1]; } };