多传感器融合定位 第九章 基于优化的建图方法

多传感器融合定位 第九章 基于优化的建图方法

代码下载:

https://github.com/kahowang/sensor-fusion-for-localization-and-mapping/tree/main/%E7%AC%AC%E4%B9%9D%E7%AB%A0%20%E5%9F%BA%E4%BA%8E%E4%BC%98%E5%8C%96%E7%9A%84%E5%BB%BA%E5%9B%BE%E6%96%B9%E6%B3%95

shenlan_ws 为按照课程ppt公式推导的代码

shenlan2_ws 为松鹏哥代码

1.IMU预积分 残差对部分变量的雅克比

预积分残差公式如下

分别为:位置残差,姿态残差,速度残差,accel_bias 残差, gyro_bias 残差
[ r p r q r v r b a r b g ] = [ q w b i ∗ ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j 2 [ q b i b j ∗ ⨂ ( q w b i ∗ ⨂ q w b j ) ] x y z q w b i ∗ ( v j w − v i w + g w Δ t ) − β b i b j b j a − b i a b j g − b i g ] \begin{bmatrix} r_p \\ r_q \\ r_v \\ r_{ba} \\ r_{bg} \end{bmatrix} = \begin{bmatrix} q_{wb_i}^{*}(p_{wb_j} - p_{wb_i} - v_i^w \Delta t + \frac{1}{2}g^w \Delta t^2) - \alpha_{b_i b_j} \\ 2[q_{b_i b_j}^{*} \bigotimes (q_{wb_i}^{*} \bigotimes q_{w b_j})]_{xyz} \\ q_{w b_i}^{*}(v_j^w - v_i^w + g^w \Delta t) - \beta_{b_i b_j} \\ b_j^a - b_i^a \\ b_j^g - b_i^g \end{bmatrix} rprqrvrbarbg=qwbi(pwbjpwbiviwΔt+21gwΔt2)αbibj2[qbibj(qwbiqwbj)]xyzqwbi(vjwviw+gwΔt)βbibjbjabiabjgbig

待优化变量

分别为:

i时刻的相对位置,i时刻的相对姿态,i时刻的速度,i时刻的accel_bias,i时刻的gyto_bias

j时刻的相对位置,j时刻的相对姿态,j时刻的速度,j时刻的accel_bias,j时刻的gyto_bias
[ p w b i q w b i v i w b i a b i g ] [ p w b j q w b j V j w b j a b j g ] \left[\begin{array}{lllll} \mathbf{p}_{w b_{i}} & \mathbf{q}_{w b_{i}} & \mathbf{v}_{i}^{w} & \mathbf{b}_{i}^{a} & \mathbf{b}_{i}^{g} \end{array}\right]\left[\begin{array}{lllll} \mathbf{p}_{w b_{j}} & \mathbf{q}_{w b_{j}} & \mathbf{V}_{j}^{w} & \mathbf{b}_{j}^{a} & \mathbf{b}_{j}^{g} \end{array}\right] [pwbiqwbiviwbiabig][pwbjqwbjVjwbjabjg]
但在实际使用中,往往都是使用扰动量,因此实际是以下变量求雅克比
[ δ p w b i δ θ w b i δ v i w δ b i a δ b i g ] [ δ p w b j δ θ w b j δ v j w δ b j a δ b j g ] \begin{aligned} &{\left[\begin{array}{lllll} \delta \mathbf{p}_{w b_{i}} & \delta \theta_{w b_{i}} & \delta \mathbf{v}_{i}^{w} & \delta \mathbf{b}_{i}^{a} & \delta \mathbf{b}_{i}^{g} \end{array}\right]} \\ &{\left[\begin{array}{lllll} \delta \mathbf{p}_{w b_{j}} & \delta \theta_{w b_{j}} & \delta \mathbf{v}_{j}^{w} & \delta \mathbf{b}_{j}^{a} & \delta \mathbf{b}_{j}^{g} \end{array}\right]} \end{aligned} [δpwbiδθwbiδviwδbiaδbig][δpwbjδθwbjδvjwδbjaδbjg]

1.1 位置残差的雅克比

1)对i时刻位置误差的雅克比
∂ r p ∂ δ p w b i = ∂ − q w b i ∗ ( p w b i + δ p w b i ) ∂ δ p w b i = − R b i w \begin{aligned} \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{p}_{w b_{i}}} &=\frac{\partial-\mathbf{q}_{w b_{i}}^{*}\left(\mathbf{p}_{w b_{i}}+\delta \mathbf{p}_{w b_{i}}\right)}{\partial \delta \mathbf{p}_{w b_{i}}} \\ &=-\mathbf{R}_{b_{i} w} \end{aligned} δpwbirp=δpwbiqwbi(pwbi+δpwbi)=Rbiw
2)对i时刻姿态误差的雅克比

推导套路:a.添加右扰动 b.把扰动移动到右边,然后消去
∂ r p ∂ δ θ w b i = ∂ ( q w b i ⊗ [ 1 1 2 δ θ w b i ] ) ∗ ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) ∂ δ θ w b i = ∂ ( R w b i exp ⁡ ( δ θ w b i ∧ ) ) − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) ∂ δ θ w b i = ∂ exp ⁡ ( ( − δ θ w b i ) ∧ ) R b i w ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) ∂ δ θ w b i ≈ ∂ ( I − δ θ w b i ∧ ) R b i w ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) ∂ δ θ w b i = ( R b i w ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) ) ∧ \begin{aligned} \frac{\partial \mathbf{r}_{p}}{\partial \delta \theta_{w b_{i}}} &=\frac{\partial\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \theta_{w b_{i}} \end{array}\right]\right)^{*}\left(\mathbf{p}_{w b_{j}}-\mathbf{p}_{w b_{i}}-\mathbf{v}_{i}^{w} \Delta t+\frac{1}{2} \mathbf{g}^{w} \Delta t^{2}\right)}{\partial \delta \theta_{w b_{i}}} \\ &=\frac{\partial\left(\mathbf{R}_{w b_{i}} \exp \left(\delta \theta_{w b_{i}}^{\wedge}\right)\right)^{-1}\left(\mathbf{p}_{w b_{j}}-\mathbf{p}_{w b_{i}}-\mathbf{v}_{i}^{w} \Delta t+\frac{1}{2} \mathbf{g}^{w} \Delta t^{2}\right)}{\partial \delta \theta_{w b_{i}}} \\ &=\frac{\partial \exp \left(\left(-\delta \theta_{w b_{i}}\right)^{\wedge}\right) \mathbf{R}_{b_{i} w}\left(\mathbf{p}_{w b_{j}}-\mathbf{p}_{w b_{i}}-\mathbf{v}_{i}^{w} \Delta t+\frac{1}{2} \mathbf{g}^{w} \Delta t^{2}\right)}{\partial \delta \theta_{w b_{i}}} \\ & \approx \frac{\partial\left(\mathbf{I}-\delta \theta_{w b_{i}}^{\wedge}\right) \mathbf{R}_{b_{i} w}\left(\mathbf{p}_{w b_{j}}-\mathbf{p}_{w b_{i}}-\mathbf{v}_{i}^{w} \Delta t+\frac{1}{2} \mathbf{g}^{w} \Delta t^{2}\right)}{\partial \delta \theta_{w b_{i}}} \\ &=\left(\mathbf{R}_{b_{i} w}\left(\mathbf{p}_{w b_{j}}-\mathbf{p}_{w b_{i}}-\mathbf{v}_{i}^{w} \Delta t+\frac{1}{2} \mathbf{g}^{w} \Delta t^{2}\right)\right)^{\wedge} \end{aligned} δθwbirp=δθwbi(qwbi[121δθwbi])(pwbjpwbiviwΔt+21gwΔt2)=δθwbi(Rwbiexp(δθwbi))1(pwbjpwbiviwΔt+21gwΔt2)=δθwbiexp((δθwbi))Rbiw(pwbjpwbiviwΔt+21gwΔt2)δθwbi(Iδθwbi)Rbiw(pwbjpwbiviwΔt+21gwΔt2)=(Rbiw(pwbjpwbiviwΔt+21gwΔt2))

3)对i时刻速度误差的雅克比
∂ r p ∂ δ v i w = − R b i w Δ t \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{v}_{i}^{w}}=-\mathbf{R}_{b_{i} w} \Delta t δviwrp=RbiwΔt
4)对i时刻accel_bias误差的雅克比
∂ r p ∂ δ b i a = ∂ − ( α ˉ b i b j + J b i a α δ b i a + J b i g α δ b i g ) ∂ δ b i a = − J b i a α \begin{aligned} \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{b}_{i}^{a}} &=\frac{\partial-\left(\bar{\alpha}_{b_{i} b_{j}}+\mathbf{J}_{b_{i}^{a}}^{\alpha} \delta \mathbf{b}_{i}^{a}+\mathbf{J}_{b_{i}^{g}}^{\alpha} \delta \mathbf{b}_{i}^{g}\right)}{\partial \delta \mathbf{b}_{i}^{a}} \\ &=-\mathbf{J}_{b_{i}^{a}}^{\alpha} \end{aligned} δbiarp=δbia(αˉbibj+Jbiaαδbia+Jbigαδbig)=Jbiaα
5)对i时刻gyro_bias误差的雅克比
∂ r p ∂ δ b i g = − J b i g α \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{b}_{i}^{g}}=-\mathbf{J}_{b_{i}^{g}}^{\alpha} δbigrp=Jbigα
6)对j时刻位置误差的雅克比
∂ r p ∂ δ p w b j = R b i w \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{p}_{wb_{j}}}=\mathbf{R}_{b_{i} w} δpwbjrp=Rbiw
7)对j时刻姿态误差的雅克比
∂ r p ∂ δ θ w b j = 0 \frac{\partial \mathbf{r}_{p}}{\partial \delta \theta_{w b_{j}}} =0 δθwbjrp=0
8)对j时刻速度误差的雅克比
∂ r p ∂ δ v j w = 0 \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{v}_{j}^{w}}=0 δvjwrp=0
9)对j时刻accel_bias误差的雅克比
∂ r p ∂ δ b j a = 0 \begin{aligned} \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{b}_{j}^{a}} &=0 \end{aligned} δbjarp=0
10)对j时刻gyro_bias误差的雅克比
∂ r p ∂ δ b j g = 0 \begin{aligned} \frac{\partial \mathbf{r}_{p}}{\partial \delta \mathbf{b}_{j}^{g}} &=0 \end{aligned} δbjgrp=0

1.2 姿态残差的雅克比

1)对i时刻位置误差的雅克比
∂ r q ∂ δ p w b i = 0 \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{p}_{w b_{i}}} &=0 \end{aligned} δpwbirq=0
2)对i时刻姿态误差的雅克比 (课程已推)
∂ r q ∂ δ θ b i b i ′ = ∂ 2 [ q b j b i ⊗ ( q b i w ⊗ q w b j ) ] x y z ∂ δ θ b i b i ′ = ∂ 2 [ q b i b j ∗ ⊗ ( q w b i ⊗ [ 1 1 2 δ θ b i b i ′ ] ] ) ∗ ⊗ q w b j ] x y z ∂ δ θ b i b i ′ = ∂ − 2 [ ( q b i b j ∗ ⊗ ( q w b i ⊗ [ 1 1 2 δ θ b i b i ′ ] ] ) ∗ ⊗ q w b j ) ∗ ] x y z ∂ δ θ b i b i ′ = ∂ − 2 [ q w b j ∗ ⊗ ( q w b i ⊗ [ 1 1 2 δ θ b i b i ′ ] ) ⊗ q b i b j ] x y z ∂ δ θ b i b i ′ \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} &=\frac{\partial 2\left[\mathbf{q}_{b_{j} b_{i}} \otimes\left(\mathbf{q}_{b_{i} w} \otimes \mathbf{q}_{w b_{j}}\right)\right]_{x y z}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial 2\left[\mathbf{q}_{b_{i} b_{j}}^{*} \otimes\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \left.\frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right] \end{array}\right]\right)^{*} \otimes \mathbf{q}_{w b_{j}}\right]_{x y z}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial-2\left[\left(\mathbf{q}_{b_{i} b_{j}}^{*} \otimes\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \left.\frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right] \end{array}\right]\right)^{*} \otimes \mathbf{q}_{w b_{j}}\right)^{*}\right]_{x y z}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial-2\left[\mathbf{q}_{w b_{j}}^{*} \otimes\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}} \end{array}\right]\right) \otimes \mathbf{q}_{b_{i} b_{j}}\right]_{x y z}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \end{aligned} δθbibirq=δθbibi2[qbjbi(qbiwqwbj)]xyz=δθbibi2[qbibj(qwbi[121δθbibi]])qwbj]xyz=δθbibi2[(qbibj(qwbi[121δθbibi]])qwbj)]xyz=δθbibi2[qwbj(qwbi[121δθbibi])qbibj]xyz

∂ r q ∂ δ θ b i b i ′ = − 2 [ 0 I ] ∂ q w b j ∗ ⊗ ( q w b i ⊗ [ 1 1 2 δ θ b i b i ′ ] ) ⊗ q b i b j ∂ δ θ b i b i ′ = − 2 [ 0 I ] ∂ [ q w b j ∗ ⊗ q w b i ] L [ q b i b j ] R [ 1 1 2 δ θ b i b i ′ ] ∂ δ θ b i b i ′ = − 2 [ 0 I ] [ q w b j ∗ ⊗ q w b i ] L [ q b i b j ] R [ 0 1 2 I ] \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} &=-2\left[\begin{array}{ll} \mathbf{0} & \mathbf{I} \end{array}\right] \frac{\partial \mathbf{q}_{w b_{j}}^{*} \otimes\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}} \end{array}\right]\right) \otimes \mathbf{q}_{b_{i} b_{j}}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=-2\left[\begin{array}{ll} \mathbf{0} & \mathbf{I} \end{array}\right] \frac{\partial\left[\mathbf{q}_{w b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}}\right]_{L}\left[\mathbf{q}_{b_{i} b_{j}}\right]_{R}\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}} \end{array}\right]}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=-2\left[\begin{array}{ll} \mathbf{0} & \mathbf{I} \end{array}\right]\left[\mathbf{q}_{w b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}}\right]_{L}\left[\mathbf{q}_{b_{i} b_{j}}\right]_{R}\left[\begin{array}{c} \mathbf{0} \\ \frac{1}{2} \mathbf{I} \end{array}\right] \end{aligned} δθbibirq=2[0I]δθbibiqwbj(qwbi[121δθbibi])qbibj=2[0I]δθbibi[qwbjqwbi]L[qbibj]R[121δθbibi]=2[0I][qwbjqwbi]L[qbibj]R[021I]

3)对i时刻速度误差的雅克比
∂ r q ∂ δ v i w = 0 \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{v}_{i}^{w}} &=0 \end{aligned} δviwrq=0
4)对i时刻accel_bias误差的雅克比
∂ r q ∂ δ b i a = 0 \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{b}_{i}^{a}} &=0 \end{aligned} δbiarq=0
5)对i时刻gyro_bias误差的雅克比 (课程已推)

∂ r q ∂ δ b i g = ∂ 2 [ ( q b i b j ⊗ [ 1 1 2 J b i q q δ b i g ] ) ∗ ⊗ q w b i ∗ ⊗ q w b j ] x y z ∂ δ b i g = ∂ − 2 [ ( ( q b i b j ⊗ [ 1 1 2 J b i g q δ b i g ] ) ∗ ⊗ q w b i ∗ ⊗ q w b j ) ∗ ] x y z ∂ δ b i g = ∂ − 2 [ q w b j ∗ ⊗ q w b i ⊗ ( q b i b j ⊗ [ 1 1 2 J b i g δ b i g ] ) ] x y z ∂ δ b i g = − 2 [ 0 I ] [ q w b j ∗ ⊗ q w b i ⊗ q b i b j ] L [ 0 1 2 J b i g q ] \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{b}_{i}^{g}} &=\frac{\partial 2\left[\left(\mathbf{q}_{b_{i} b_{j}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \mathbf{J}_{b_{i}^{q}}^{q} \delta \mathbf{b}_{i}^{g} \end{array}\right]\right)^{*} \otimes \mathbf{q}_{w b_{i}}^{*} \otimes \mathbf{q}_{w b_{j}}\right]_{x y z}}{\partial \delta \mathbf{b}_{i}^{g}} \\ &=\frac{\partial-2\left[\left(\left(\mathbf{q}_{b_{i} b_{j}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \mathbf{J}_{b_{i}^{g}}^{q} \delta \mathbf{b}_{i}^{g} \end{array}\right]\right)^{*} \otimes \mathbf{q}_{w b_{i}}^{*} \otimes \mathbf{q}_{w b_{j}}\right)^{*}\right]_{x y z}}{\partial \delta \mathbf{b}_{i}^{g}} \\ &=\frac{\partial-2\left[\mathbf{q}_{w b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}} \otimes\left(\mathbf{q}_{b_{i} b_{j}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \mathbf{J}_{b_{i}^{g}} \delta \mathbf{b}_{i}^{g} \end{array}\right]\right)\right]_{x y z}}{\partial \delta \mathbf{b}_{i}^{g}} \\ &=-2[\mathbf{0} \mathbf{I}]\left[\mathbf{q}_{w b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}} \otimes \mathbf{q}_{b_{i} b_{j}}\right]_{L}\left[\begin{array}{c} 0 \\ \frac{1}{2} \mathbf{J}_{b_{i}^{g}}^{q} \end{array}\right] \end{aligned} δbigrq=δbig2[(qbibj[121Jbiqqδbig])qwbiqwbj]xyz=δbig2[((qbibj[121Jbigqδbig])qwbiqwbj)]xyz=δbig2[qwbjqwbi(qbibj[121Jbigδbig])]xyz=2[0I][qwbjqwbiqbibj]L[021Jbigq]
6)对j时刻位置误差的雅克比
∂ r q ∂ δ p w b j = 0 \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{p}_{wb_{j}}}=0 δpwbjrq=0
7)对j时刻姿态误差的雅克比
∂ r q ∂ δ θ w b j = ∂ 2 [ q b i b j ∗ ⊗ q w b i ∗ ⊗ q w b j ⊗ [ 1 1 2 δ θ w b j ] ] x y z ∂ δ θ w b j = 2 [ 0 I ] [ q b i b j ∗ ⊗ q w b i ∗ ⊗ q w b j ] L [ 1 1 2 I ] \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \theta_{w b_{j}}} &=\frac{\partial 2\left[\mathbf{q}_{b_{i} b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}}^{*} \otimes \mathbf{q}_{w b_{j}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \theta_{w b_{j}} \end{array}\right]\right]_{x y z}}{\partial \delta \theta_{w b_{j}}} \\ &=2\left[\begin{array}{ll} 0 & \mathbf{I}]\left[\mathbf{q}_{b_{i} b_{j}}^{*} \otimes \mathbf{q}_{w b_{i}}^{*} \otimes \mathbf{q}_{w b_{j}}\right]_{L}\left[\begin{array}{c} 1 \\ \frac{1}{2} \mathbf{I} \end{array}\right] \end{array}\right. \end{aligned} δθwbjrq=δθwbj2[qbibjqwbiqwbj[121δθwbj]]xyz=2[0I][qbibjqwbiqwbj]L[121I]
8)对j时刻速度误差的雅克比
∂ r q ∂ δ v j w = 0 \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{v}_{j}^{w}}=0 δvjwrq=0
9)对j时刻accel_bias误差的雅克比
∂ r q ∂ δ b j a = 0 \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{b}_{j}^{a}} &=0 \end{aligned} δbjarq=0
10)对j时刻gyro_bias误差的雅克比
∂ r q ∂ δ b j g = 0 \begin{aligned} \frac{\partial \mathbf{r}_{q}}{\partial \delta \mathbf{b}_{j}^{g}} &=0 \end{aligned} δbjgrq=0

1.3 速度残差的雅克比

1)对i时刻位置误差的雅克比
∂ r v ∂ δ p w b i = 0 \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{p}_{w b_{i}}} &=0 \end{aligned} δpwbirv=0
2)对i时刻姿态误差的雅克比
∂ r v ∂ δ θ b i b i ′ = ∂ ( q w b i ⊗ [ 1 1 2 δ θ b i b i ′ ] ) − 1 ( v j w − v i w + g w Δ t ) ∂ δ θ b i b i ′ = ∂ ( R w b i exp ⁡ ( [ δ θ b i b i ′ ] × ) ) − 1 ( v j w − v i w + g w Δ t ) ∂ δ θ b i b i ′ = ∂ exp ⁡ ( [ − δ θ b i b i ′ ] × ) R b i w ( v j w − v i w + g w Δ t ) ∂ δ θ b i b i ′ = ∂ ( I − [ δ θ b i b i ′ ] × ) R b i w ( v j w − v i w + g w Δ t ) ∂ δ θ b i b i ′ = ∂ − [ δ θ b i b i ′ ] × R b i w ( v j w − v i w + g w Δ t ) ∂ δ θ b i b i ′ = [ R b i w ( v j w − v i w + g w Δ t ) ] × \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} &=\frac{\partial\left(\mathbf{q}_{w b_{i}} \otimes\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}} \end{array}\right]\right)^{-1}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial\left(\mathbf{R}_{w b_{i}} \exp \left(\left[\delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right]_{\times}\right)\right)^{-1}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial \exp \left(\left[-\delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right]_{\times}\right) \mathbf{R}_{b_{i} w}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial\left(\mathbf{I}-\left[\delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right]_{\times}\right) \mathbf{R}_{b_{i} w}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\frac{\partial-\left[\delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}\right]_{\times} \mathbf{R}_{b_{i} w}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)}{\partial \delta \boldsymbol{\theta}_{b_{i} b_{i}^{\prime}}} \\ &=\left[\mathbf{R}_{b_{i} w}\left(\mathbf{v}_{j}^{w}-\mathbf{v}_{i}^{w}+\mathbf{g}^{w} \Delta t\right)\right]_{\times} \end{aligned} δθbibirv=δθbibi(qwbi[121δθbibi])1(vjwviw+gwΔt)=δθbibi(Rwbiexp([δθbibi]×))1(vjwviw+gwΔt)=δθbibiexp([δθbibi]×)Rbiw(vjwviw+gwΔt)=δθbibi(I[δθbibi]×)Rbiw(vjwviw+gwΔt)=δθbibi[δθbibi]×Rbiw(vjwviw+gwΔt)=[Rbiw(vjwviw+gwΔt)]×
3)对i时刻速度误差的雅克比
∂ r v ∂ δ v i w = − R b i w \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{v}_{i}^{w}} &= -\mathbf{R}_{b_{i} w} \end{aligned} δviwrv=Rbiw
4)对i时刻accel_bias误差的雅克比
∂ r v ∂ δ b i a = − ∂ β b i b j ∂ δ b i a = − J b i a β \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{b}_{i}^{a}}=-\frac{\partial \boldsymbol{\beta}_{b_{i} b_{j}}}{\partial \delta \mathbf{b}_{i}^{a}}=-\mathbf{J}_{b_{i}^{a}}^{\beta} δbiarv=δbiaβbibj=Jbiaβ
5)对i时刻gyro_bias误差的雅克比
∂ r v ∂ δ b i g = − ∂ β b i b j ∂ δ b i a = − J b i g β \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{b}_{i}^{g}}=-\frac{\partial \boldsymbol{\beta}_{b_{i} b_{j}}}{\partial \delta \mathbf{b}_{i}^{a}}=-\mathbf{J}_{b_{i}^{g}}^{\beta} δbigrv=δbiaβbibj=Jbigβ
6)对j时刻位置误差的雅克比
∂ r v ∂ δ p w b j = 0 \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{p}_{wb_{j}}}=0 δpwbjrv=0
7)对j时刻姿态误差的雅克比
∂ r v ∂ δ θ w b j = 0 \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \theta_{w b_{j}}} &=0 \end{aligned} δθwbjrv=0
8)对j时刻速度误差的雅克比
∂ r v ∂ δ v j w = R b i w \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{v}_{j}^{w}} = \mathbf{R}_{b_{i} w} δvjwrv=Rbiw
9)对j时刻accel_bias误差的雅克比
∂ r v ∂ δ b j a = 0 \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{b}_{j}^{a}} &=0 \end{aligned} δbjarv=0
10)对j时刻gyro_bias误差的雅克比
∂ r v ∂ δ b j g = 0 \begin{aligned} \frac{\partial \mathbf{r}_{v}}{\partial \delta \mathbf{b}_{j}^{g}} &=0 \end{aligned} δbjgrv=0

1.4 加速度零偏残差的雅克比

1)对i时刻位置误差的雅克比
∂ r b a ∂ δ p w b i = 0 \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{p}_{w b_{i}}}=\mathbf{0} δpwbirba=0
2)对i时刻姿态误差的雅克比
∂ r b a ∂ δ θ w b i = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \boldsymbol{\theta}_{wb_{i} {}}} &=0 \end{aligned} δθwbirba=0
3)对i时刻速度误差的雅克比
∂ r b a ∂ δ v i w = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{v}_{i}^{w}} &= 0 \end{aligned} δviwrba=0
4)对i时刻accel_bias误差的雅克比
∂ r b a ∂ δ b i a = − I \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{b}_{i}^{a}}=-I δbiarba=I
5)对i时刻gyro_bias误差的雅克比
∂ r b a ∂ δ b i g = 0 \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{b}_{i}^{g}}=0 δbigrba=0
6)对j时刻位置误差的雅克比
∂ r b a ∂ δ p w b j = 0 \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{p}_{w b_{j}}}=\mathbf{0} δpwbjrba=0
7)对j时刻姿态误差的雅克比
∂ r b a ∂ δ θ w b j = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \boldsymbol{\theta}_{wb_{j} {}}} &=0 \end{aligned} δθwbjrba=0
8)对j时刻速度误差的雅克比
∂ r b a ∂ δ v j w = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{v}_{j}^{w}} &= 0 \end{aligned} δvjwrba=0
9)对j时刻accel_bias误差的雅克比
∂ r b a ∂ δ b j a = I \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{b}_{j}^{a}}=I δbjarba=I
10)对j时刻gyro_bias误差的雅克比
∂ r b a ∂ δ b j g = 0 \frac{\partial \mathbf{r}_{b^{a}}}{\partial \delta \mathbf{b}_{j}^{g}}=0 δbjgrba=0

1.5 角速度零偏残差雅克比

1)对i时刻位置误差的雅克比
∂ r b g ∂ δ p w b i = 0 \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{p}_{w b_{i}}}=\mathbf{0} δpwbirbg=0
2)对i时刻姿态误差的雅克比
∂ r b g ∂ δ θ w b i = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \boldsymbol{\theta}_{wb_{i} {}}} &=0 \end{aligned} δθwbirbg=0
3)对i时刻速度误差的雅克比
∂ r b g ∂ δ v i w = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{v}_{i}^{w}} &= 0 \end{aligned} δviwrbg=0
4)对i时刻accel_bias误差的雅克比
∂ r b g ∂ δ b i a = 0 \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{b}_{i}^{a}}=0 δbiarbg=0
5)对i时刻gyro_bias误差的雅克比
∂ r b g ∂ δ b i g = − I \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{b}_{i}^{g}}=-I δbigrbg=I
6)对j时刻位置误差的雅克比
∂ r b g ∂ δ p w b j = 0 \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{p}_{w b_{j}}}=\mathbf{0} δpwbjrbg=0
7)对j时刻姿态误差的雅克比
∂ r b g ∂ δ θ w b j = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \boldsymbol{\theta}_{wb_{j} {}}} &=0 \end{aligned} δθwbjrbg=0
8)对j时刻速度误差的雅克比
∂ r b g ∂ δ v j w = 0 \begin{aligned} \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{v}_{j}^{w}} &= 0 \end{aligned} δvjwrbg=0
9)对j时刻accel_bias误差的雅克比
∂ r b g ∂ δ b j a = 0 \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{b}_{j}^{a}}=0 δbjarbg=0
10)对j时刻gyro_bias误差的雅克比
∂ r b g ∂ δ b j g = I \frac{\partial \mathbf{r}_{b^{g}}}{\partial \delta \mathbf{b}_{j}^{g}}=I δbjgrbg=I

2.补全预积分部分代码

预积分代码填充部分,参考作业的示例里为松鹏大哥的代码,此部分代码,在求解残差雅克比时,使用的是vins的写法,所以与课程的ppt公式会有所不同。本节的作业补全代码提供 1.作业讲评的代码参考 2. 按照作业ppt公式推导的代码参考

2.1 作业讲评的代码参考

FILE : lidar_localization/src/models/pre_integrator/imu_pre_integrator.cpp UpdateState()

注意:在误差雅克比推导过程中

a.F12 PPT中的推导为( I - w.vee()*delta_t ) , 而 dR_inv = d_theta_ij.inverse().matrix() , 两者是近似的,因为(I - w.vee()*delta_t ) 近似与 exp(-theta) ,exp(-theta)为-theta进行so3的指数映射,所以exp(-theta) = (exp(theta))^-1 = R.inverse()

b.F 和 B阵的写法按照vins的写法 ,例如 F_k+1 = I + F_k * T ; B_k+1 = B_k * T

    // TODO: a. update mean:
    //
    // 1. get w_mid:
    w_mid = 0.5 * (prev_w + curr_w) ;
    // 2. update relative orientation, so3:     更新新姿态角
    prev_theta_ij = state.theta_ij_;
    d_theta_ij = Sophus::SO3d::exp(w_mid * T) ;      //  ij 时刻的相对姿态
    state.theta_ij_ = state.theta_ij_ * d_theta_ij ;      //  当前时刻姿态更新
    curr_theta_ij =  state.theta_ij_ ;
    // 3. get a_mid:        
    a_mid = 0.5 * (prev_theta_ij * prev_a  +  curr_theta_ij * curr_a);   //  aceel  world系下
    // 4. update relative translation:      更新平移
    state.alpha_ij_ +=  state.beta_ij_ * T + 0.5 * a_mid * T * T ;      //  p_k+1 =  v_k * T + 0.5*a_k+1*t*t
    // 5. update relative velocity:
    state.beta_ij_ +=  a_mid * T;               //  vel  world系下
    // TODO: b. update covariance:
    //
    // 1. intermediate results:
    dR_inv = d_theta_ij.inverse().matrix();
    prev_R = prev_theta_ij.matrix();
    curr_R  = curr_theta_ij.matrix();
    prev_R_a_hat = prev_R * Sophus::SO3d::hat(prev_a) ;
    curr_R_a_hat  = curr_R  * Sophus::SO3d::hat(curr_a) ; 
    // TODO: 2. set up F:
    //
    // F12 & F22 & F32:  F_k 和  G_k 是离散时间下的状态传递方程中的矩阵,一般是在连续时间下推导微分方程,再用它计算离散时间下的传递方程
    F_.block<3,  3>(INDEX_ALPHA,  INDEX_THETA)  =  -0.25 * T  * (prev_R_a_hat  +  curr_R_a_hat * dR_inv) ;   //  F12
    F_.block<3,  3>(INDEX_BETA, INDEX_THETA)  =  - 0.5 * T *(prev_R_a_hat  + curr_R_a_hat * dR_inv ) ;     //  F32
    // F14 & F34:
    F_.block<3,3>(INDEX_ALPHA, INDEX_B_A) =  -0.25 * T * (prev_R + curr_R);    //  F14
    F_.block<3,3>(INDEX_BETA,INDEX_B_A)  =  -0.5 *  (prev_R + curr_R);       //  F34 
    // F15 & F25 & F35:
    F_.block<3,3>(INDEX_ALPHA, INDEX_B_G) = 0.25 * T * T * curr_R_a_hat  ;   //  F15
    F_.block<3,3>(INDEX_BETA, INDEX_B_G) = 0.5 * T  * curr_R_a_hat;  // F35 
    //  F22
    F_.block<3,  3>(INDEX_THETA, INDEX_THETA) =  - Sophus::SO3d::hat(w_mid) ;  //  F22 
    // TODO: 3. set up B:
    //
    // G11 & G31:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_ACC_PREV) = 0.25 * prev_R * T ;            //  G11
    B_.block<3,3>(INDEX_BETA, INDEX_M_ACC_PREV) = 0.5 * prev_R ;           // G31
    // G12 & G22 & G32:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_GYR_PREV) = -0.125 * T * T * curr_R_a_hat ; // G12
    B_.block<3,3>(INDEX_BETA, INDEX_M_GYR_PREV) = -0.25 * T *curr_R_a_hat ;     // G32
    // G13 & G33:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_ACC_CURR) = 0.25 * curr_R * T ;    //  G13
    B_.block<3,3>(INDEX_BETA, INDEX_M_ACC_CURR) = 0.5 * curr_R ;    //  G33
    // G14 & G24 & G34:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_GYR_CURR) = -0.125 * T  * T * curr_R_a_hat;  // G14
    B_.block<3,3>(INDEX_BETA,INDEX_M_GYR_CURR ) =  -0.25 * T *curr_R_a_hat;  // G34
    // TODO: 4. update P_:
    MatrixF  F = MatrixF::Identity() + T *F_ ;
    MatrixB B = T * B_;
    P_ = F * P_ * F.transpose()  + B * Q_ * B.transpose() ;                     //   Q  imu噪声的方差
    // TODO: 5. update Jacobian:
    //
    J_ = F * J_ ;

FILE : lidar_localization/include/lidar_localization/models/graph_optimizer/g2o/edge/edge_prvag
_imu_pre_integration.hpp computeError()

注意:残差推导的R项中,课程参考代码推导方式使用SO3 旋转矩阵推导。而ppt中的推导方式使用的是四元数,当theta为微小量是,使用四元数进行推导的残差四元数的虚部 近似于 2/theta, 所以如果是用四元数的虚部表示残差r_q时,是需要在四元数虚部的基础上乘2。

		// TODO: update pre-integration measurement caused by bias change:
		// 
		if (v0 -> isUpdated() ) {
			Eigen::Vector3d  d_b_a_i , d_b_g_i ;
			v0->getDeltaBiases(d_b_a_i, d_b_g_i);
			updateMeasurement(d_b_a_i,d_b_g_i);
		}
		// TODO: compute error:
		//
		const Eigen::Vector3d &alpha_ij =  _measurement.block<3,  1>(INDEX_P,  0);			//   获取观测值
		const Eigen::Vector3d &theta_ij  = _measurement.block<3,   1>(INDEX_R, 0);			 
		const Eigen::Vector3d &beta_ij  = _measurement.block<3, 1>(INDEX_V, 0);		
		_error.block<3, 1>(INDEX_P, 0)  = ori_i.inverse().matrix() * (pos_j - pos_i - vel_i * T_ + 0.5 * g_ * T_ * T_) - alpha_ij;
		_error.block<3,1>(INDEX_R, 0)	= (Sophus::SO3d::exp(theta_ij).inverse() * ori_i.inverse() * ori_j).log();
		_error.block<3, 1>(INDEX_V, 0) = ori_i.inverse() * (vel_j - vel_i + g_ * T_) - beta_ij;
		_error.block<3, 1>(INDEX_A, 0) = b_a_j - b_a_i;
		_error.block<3, 1>(INDEX_G, 0) = b_g_j - b_g_i;

lidar_localization/include/lidar_localization/models/graph_optimizer/g2o/vertex/vertex_prva
g.hpp oplusImpl()

    virtual void oplusImpl(const double *update) override {
        //
        // TODO: do update
        //
        _estimate.pos  +=  Eigen::Vector3d(
            update[PRVAG::INDEX_POS + 0],  update[PRVAG::INDEX_POS + 1],  update[PRVAG::INDEX_POS + 2]  
        );
        _estimate.ori    =  _estimate.ori * Sophus::SO3d::exp(
            Eigen::Vector3d(
                update[PRVAG::INDEX_ORI + 0],  update[PRVAG::INDEX_ORI + 1],  update[PRVAG::INDEX_ORI + 2]  
            )
        );
        _estimate.vel += Eigen::Vector3d(
                update[PRVAG::INDEX_VEL + 0],  update[PRVAG::INDEX_VEL + 1],  update[PRVAG::INDEX_VEL + 2]  
        );
        Eigen::Vector3d d_b_a_i(
                update[PRVAG::INDEX_B_A + 0],  update[PRVAG::INDEX_B_A + 1],  update[PRVAG::INDEX_B_A + 2]  
        );
        Eigen::Vector3d d_b_g_i(
                update[PRVAG::INDEX_B_G + 0],  update[PRVAG::INDEX_B_G + 1],  update[PRVAG::INDEX_B_G + 2]  
        );

        _estimate.b_a += d_b_a_i ;
        _estimate.b_g += d_b_g_i;               

        updateDeltaBiases(d_b_a_i, d_b_g_i);
    }

2.2 按照课程ppt公式推导的代码参考

FILE : lidar_localization/src/models/pre_integrator/imu_pre_integrator.cpp UpdateState()

    //
    // TODO: a. update mean:        名义值更新:中值积分
    //
    // 1. get w_mid:
    w_mid = 0.5 * (prev_w + curr_w) ;
    // 2. update relative orientation, so3:     更新新姿态角
    prev_theta_ij = state.theta_ij_;
    d_theta_ij = Sophus::SO3d::exp(w_mid * T) ;      //  ij 时刻的相对姿态
    state.theta_ij_ = state.theta_ij_ * d_theta_ij ;      //  当前时刻姿态更新
    curr_theta_ij =  state.theta_ij_ ;
    // 3. get a_mid:        
    a_mid = 0.5 * (prev_theta_ij * prev_a  +  curr_theta_ij * curr_a);   //  aceel  world系下
    // 4. update relative translation:      更新平移
    state.alpha_ij_ +=  state.beta_ij_ * T + 0.5 * a_mid * T * T ;      //  p_k+1 =  v_k * T + 0.5*a_k+1*t*t
    // 5. update relative velocity:
    state.beta_ij_ +=  a_mid * T;               //  vel  world系下
    // TODO: b. update covariance:  误差值更新: 中间值
    //
    // 1. intermediate results:
    dR_inv = d_theta_ij.inverse().matrix();
    prev_R = prev_theta_ij.matrix();
    curr_R  = curr_theta_ij.matrix();
    prev_R_a_hat = prev_R * Sophus::SO3d::hat(prev_a) ;
    curr_R_a_hat  = curr_R  * Sophus::SO3d::hat(curr_a) ; 
    // TODO: 2. set up F:  误差更新:F矩阵
    //
    // F12 & F22 & F32:  F_k 和  G_k 是离散时间下的状态传递方程中的矩阵,一般是在连续时间下推导微分方程,再用它计算离散时间下的传递方程
    F_ = MatrixF::Identity();
    F_.block<3,  3>(INDEX_ALPHA,  INDEX_THETA)  =  -0.25 * T * T * (prev_R_a_hat  +  curr_R_a_hat * (Eigen::Matrix3d::Identity() - Sophus::SO3d::hat(w_mid)*T ) ) ;   //  F12
    F_.block<3,  3>(INDEX_THETA, INDEX_THETA) = Eigen::Matrix3d::Identity() - Sophus::SO3d::hat(w_mid)*T ;  //  F22 
    F_.block<3,  3>(INDEX_BETA, INDEX_THETA)  =  - 0.5 * T *(prev_R_a_hat  + curr_R_a_hat * (Eigen::Matrix3d::Identity() - Sophus::SO3d::hat(w_mid)*T ) ) ;     //  F32
    //  F13
    F_.block<3, 3>(INDEX_ALPHA, INDEX_BETA) = Eigen::Matrix3d::Identity() * T ;   //  F13
    // F14 & F34:
    F_.block<3,3>(INDEX_ALPHA, INDEX_B_A) =  -0.25 * T * T * (prev_R + curr_R);    //  F14
    F_.block<3,3>(INDEX_BETA,INDEX_B_A)  =  -0.5 * T * (prev_R + curr_R);       //  F34 
    // F15 & F25 & F35:
    F_.block<3,3>(INDEX_ALPHA, INDEX_B_G) = 0.25 * T * T * T * curr_R_a_hat  ;   //  F15
    F_.block<3,3>(INDEX_THETA, INDEX_B_G) = - Eigen::Matrix3d::Identity() * T ;  //  F25
    F_.block<3,3>(INDEX_BETA, INDEX_B_G) = 0.5 * T * T * curr_R_a_hat;  // F35 
    // TODO: 3. set up B:  误差更新:B矩阵
    //
    B_ = MatrixB::Zero();
    // G11 & G31:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_ACC_PREV) = 0.25 * prev_R * T *T;            //  G11
    B_.block<3,3>(INDEX_BETA, INDEX_M_ACC_PREV) = 0.5 * prev_R * T ;           // G31
    // G12 & G22 & G32:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_GYR_PREV) = -0.125 * T * T * T * curr_R_a_hat ; // G12
    B_.block<3,3>(INDEX_THETA, INDEX_M_GYR_PREV) = 0.5 * T * Eigen::Matrix3d::Identity()  ; // G22
    B_.block<3,3>(INDEX_BETA, INDEX_M_GYR_PREV) = -0.25 * T * T *curr_R_a_hat ;     // G32
    // G13 & G33:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_ACC_CURR) = 0.25 * curr_R * T * T;    //  G13
    B_.block<3,3>(INDEX_BETA, INDEX_M_ACC_CURR) = 0.5 * curr_R * T;    //  G33
    // G14 & G24 & G34:
    B_.block<3,3>(INDEX_ALPHA, INDEX_M_GYR_CURR) = -0.125 * T * T * T * curr_R_a_hat;  // G14
    B_.block<3,3>(INDEX_THETA, INDEX_M_GYR_CURR) = 0.5 * Eigen::Matrix3d::Identity() * T ; // G24
    B_.block<3,3>(INDEX_BETA,INDEX_M_GYR_CURR ) =  -0.25 * T * T *curr_R_a_hat;  // G34
    //G45   
    B_.block<3,3>(INDEX_B_A, INDEX_R_ACC_PREV) = Eigen::Matrix3d::Identity() * T;     //G45
    //G56
    B_.block<3,3>(INDEX_B_G, INDEX_R_GYR_PREV) = Eigen::Matrix3d::Identity() * T;    //G56
   // TODO: 4. update P_:	误差更新 P 矩阵
    P_ = F_ * P_ * F_.transpose()  + B_ * Q_ * B_.transpose() ;                     //   Q  imu噪声的方差
    // TODO: 5. update Jacobian:  误差更新 J 矩阵
    //
    J_ = F_ * J_ ;

FILE : lidar_localization/include/lidar_localization/models/graph_optimizer/g2o/edge/edge_prvag
_imu_pre_integration.hpp computeError()

		// TODO: update pre-integration measurement caused by bias change:  更新预积分部分(由于bias的改变,产生的变化)
		// 
		if (v0 -> isUpdated() ) {
			Eigen::Vector3d  d_b_a_i , d_b_g_i ;
			v0->getDeltaBiases(d_b_a_i, d_b_g_i);
			updateMeasurement(d_b_a_i,d_b_g_i);
		}
		// TODO: compute error:
		//
		const Eigen::Vector3d &alpha_ij =  _measurement.block<3,  1>(INDEX_P,  0);			//   获取观测值
		const Eigen::Vector3d &theta_ij  = _measurement.block<3,   1>(INDEX_R, 0);		
		const Eigen::Vector3d &beta_ij  = _measurement.block<3, 1>(INDEX_V, 0);		
		Eigen::Quaterniond q_ij = Eigen::Quaterniond(Sophus::SO3d::exp(theta_ij).matrix());
		Eigen::Quaterniond q_wbi =  Eigen::Quaterniond(ori_i.matrix());
		Eigen::Quaterniond q_wbj =  Eigen::Quaterniond(ori_j.matrix());
		_error.block<3, 1>(INDEX_P, 0)  = ori_i.inverse().matrix() * (pos_j - pos_i - vel_i * T_ + 0.5 * g_ * T_ * T_) - alpha_ij;
		_error.block<3, 1>(INDEX_R, 0) = 2*(q_ij.conjugate() * (q_wbi.conjugate() * q_wbj)).vec();				//  当theta为小量时,theta 近似于 四元数的虚部的两倍
		_error.block<3, 1>(INDEX_V, 0) = ori_i.inverse() * (vel_j - vel_i + g_ * T_) - beta_ij;
		_error.block<3, 1>(INDEX_A, 0) = b_a_j - b_a_i;
		_error.block<3, 1>(INDEX_G, 0) = b_g_j - b_g_i;

lidar_localization/include/lidar_localization/models/graph_optimizer/g2o/vertex/vertex_prva
g.hpp oplusImpl()

    virtual void oplusImpl(const double *update) override {         //  顶点更新
        //
        // TODO: do update
        //
        _estimate.pos  +=  Eigen::Vector3d(
            update[PRVAG::INDEX_POS + 0],  update[PRVAG::INDEX_POS + 1],  update[PRVAG::INDEX_POS + 2]  
        );
        _estimate.ori    =  _estimate.ori * Sophus::SO3d::exp(
            Eigen::Vector3d(
                update[PRVAG::INDEX_ORI + 0],  update[PRVAG::INDEX_ORI + 1],  update[PRVAG::INDEX_ORI + 2]  
            )
        );
        _estimate.vel += Eigen::Vector3d(
                update[PRVAG::INDEX_VEL + 0],  update[PRVAG::INDEX_VEL + 1],  update[PRVAG::INDEX_VEL + 2]  
        );
        Eigen::Vector3d d_b_a_i(
                update[PRVAG::INDEX_B_A + 0],  update[PRVAG::INDEX_B_A + 1],  update[PRVAG::INDEX_B_A + 2]  
        );
        Eigen::Vector3d d_b_g_i(
                update[PRVAG::INDEX_B_G + 0],  update[PRVAG::INDEX_B_G + 1],  update[PRVAG::INDEX_B_G + 2]  
        );

        _estimate.b_a += d_b_a_i ;
        _estimate.b_g += d_b_g_i;               

        updateDeltaBiases(d_b_a_i, d_b_g_i);
    }

3.evo 评估 used imu_pre and no uded imu_pre

3.1 选择是否融合imu_pre

gnss 、 loop_close、imu_pre_integration、odo-pre_integration 开关

FILE : lidar_localiation/config/mapping/lio_back_end.yaml

#     1. g2o
graph_optimizer_type: g2o

# config measurement used:
# a. GNSS
use_gnss: true
# b. loop closure
use_loop_close: true
# c. IMU pre-integration		使用预积分:true    不使用预积分:false
use_imu_pre_integration: false			
# c. odo pre-integration
use_odo_pre_integration: true
evo_rpe kitti ground_truth.txt optimized.txt -r trans_part --delta 100 --plot --plot_mode xyz
evo_ape kitti ground_truth.txt optimized.txt -r full --plot --plot_mode xyz

3.2 使用作业讲评代码

no used imu_pre used imu_pre
多传感器融合定位 第九章 基于优化的建图方法_第1张图片 多传感器融合定位 第九章 基于优化的建图方法_第2张图片
多传感器融合定位 第九章 基于优化的建图方法_第3张图片 多传感器融合定位 第九章 基于优化的建图方法_第4张图片
evo_ape 多传感器融合定位 第九章 基于优化的建图方法_第5张图片 多传感器融合定位 第九章 基于优化的建图方法_第6张图片
多传感器融合定位 第九章 基于优化的建图方法_第7张图片 多传感器融合定位 第九章 基于优化的建图方法_第8张图片
max 1.375001
mean 0.358914
median 0.332925
min 0.023321
rmse 0.413774
sse 327.693883
std 0.205887
max 2.338323
mean 0.807955
median 0.710029
min 0.025905
rmse 0.935937
sse 1676.620677
std 0.472425

3.3 使用课程推导的PPT公式

no used imu_pre used imu_pre
多传感器融合定位 第九章 基于优化的建图方法_第9张图片 多传感器融合定位 第九章 基于优化的建图方法_第10张图片
多传感器融合定位 第九章 基于优化的建图方法_第11张图片 多传感器融合定位 第九章 基于优化的建图方法_第12张图片
evo_ape 多传感器融合定位 第九章 基于优化的建图方法_第13张图片 多传感器融合定位 第九章 基于优化的建图方法_第14张图片
多传感器融合定位 第九章 基于优化的建图方法_第15张图片 多传感器融合定位 第九章 基于优化的建图方法_第16张图片
max 1.375001
mean 0.358914
median 0.332925
min 0.023321
rmse 0.413774
sse 327.693883
std 0.205887
max 2.314255
mean 0.803588
median 0.704937
min 0.025532
rmse 0.930225
sse 1656.221045
std 0.468578

3.4 结论

加入imu_pre 后,在精度上并没有太大的优化,推测可能是kitti数据自身存在误差。但使用因子图融合的方法,比laser_odom 精度要高

4.推导融合编码器时预积分公式的推导(方差递推、残差对状态量雅克比、bias更新)

此部分推导,主要参考张松鹏的推导过程

注意:

1.为什么imu需要做预积分,而雷达不需要做,编码器需要做预积分吗?

​ imu、编码器获取都是载体系(body)下的测量值,每次积分都需要转换到w系下,需要重新积分,使用预积分的方法,可以大大降低不必要的重复计算。雷达获取的是两帧点云间的位姿,不需要做转换。

2.编码器提供的是二维测量,能够反馈较为准确的位置信息。imu能反馈角速度和线加速度信息,通过对角速度进行积分可获相对旋转角度,通过对线加速度积分可获得相对位移,但使用imu积分得到的相对位移发散问题比较严重。故在imu+编码器融合的方法,可选取 imu提供p,imu提供q、v的方法进行融合。

​ edited by kaho 2022.3.10

你可能感兴趣的:(深蓝-多传感器定位融合,自动驾驶,机器学习,线性代数)