import os.path as osp
import mmcv
import numpy as np
from mmdet.datasets.builder import DATASETS
from mmdet.datasets.custom import CustomDataset
@DATASETS.register_module()
class KittiDataset(CustomDataset):
CLASSES = ('Car', 'Pedestrian', 'Cyclist')
def load_annotations(self, ann_file):
cat2label = {k: i for i, k in enumerate(self.CLASSES)}
# load image list from file
image_list = mmcv.list_from_file(self.ann_file)
data_infos = []
# convert annotations to middle format
for image_id in image_list:
filename = f'{self.img_prefix}/{image_id}.png'
image = mmcv.imread(filename)
height, width = image.shape[:2]
data_info = dict(filename=f'{image_id}.png', width=width, height=height)
# load annotations
label_prefix = self.img_prefix.replace('image_2', 'label_2')
lines = mmcv.list_from_file(osp.join(label_prefix, f'{image_id}.txt'))
content = [line.strip().split(' ') for line in lines]
bbox_names = [x[0] for x in content]
bboxes = [[float(info) for info in x[4:8]] for x in content]
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_labels_ignore = []
# filter 'DontCare'
for bbox_name, bbox in zip(bbox_names, bboxes):
if bbox_name in cat2label:
gt_labels.append(cat2label[bbox_name])
gt_bboxes.append(bbox)
else:
gt_labels_ignore.append(-1)
gt_bboxes_ignore.append(bbox)
data_anno = dict(
bboxes=np.array(gt_bboxes, dtype=np.float32).reshape(-1, 4),
labels=np.array(gt_labels, dtype=np.long),
bboxes_ignore=np.array(gt_bboxes_ignore,
dtype=np.float32).reshape(-1, 4),
labels_ignore=np.array(gt_labels_ignore, dtype=np.long))
data_info.update(ann=data_anno)
data_infos.append(data_info)
return data_infos
3.2 修改mmdet/datasets/__init__.py,修改位置已注释标出
from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
from .custom import CustomDataset
from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset,
RepeatDataset)
from .deepfashion import DeepFashionDataset
from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset
from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler
from .utils import replace_ImageToTensor
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
from .kitti import KittiDataset #新加
__all__ = [
#下面的KittiDataset为新加
'KittiDataset','CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset',
'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset',
'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler',
'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset',
'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES',
'build_dataset', 'replace_ImageToTensor'
]
from mmdet.apis import init_detector, inference_detector, show_result_pyplot
import mmcv
config_file = 'configs/fcos/fcos_r50_caffe_fpn_4x4_1x_coco.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
checkpoint_file = 'fcos_output/fcos_r50_caffe_fpn_4x4_1x_coco/epoch_12.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:2')
# test a single image
img = 'demo.jpg'
result = inference_detector(model, img)
#print(result)
# show the results
show_result_pyplot(model, img, result)
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s