Widerface数据集 | widerface数据集转成YOLO格式

widerface数据处理

  • 一、原始数据格式转为VOC格式
  • 二、VOC格式转为COCO格式
    • 第一步:转成COCO格式
    • 第二步:从原来打乱的XML标注文件中提取出train和val
  • 三、VOC格式转成YOLO格式
    • 第一步:提取标注文件夹里面的文件名
    • 第二步:将xml格式转成yolo格式
  • 四、在转换过程中查看框是否正确
    • 1. 查看VOC是否转换正确(文件命名为:xml_draw.py)
    • 2. 查看COCO是否转换正确(文件命名为:json_draw.py)

一、原始数据格式转为VOC格式

  1. 首先应该创建三个文件夹:Annotations,ImageSets\Main,JPEGImages
    Widerface数据集 | widerface数据集转成YOLO格式_第1张图片
    Widerface数据集 | widerface数据集转成YOLO格式_第2张图片
  2. 运行下面的代码,注意一定要写对路径且不能有中文
    注意,这需要执行两次,分别是train和val。 文件命名为:face2voc.py

# coding:utf-8
import os,cv2,sys,shutil,numpy
 
from xml.dom.minidom import Document
import os
 
 
# 本程序可以将widerface转为VOC格式的数据
 
def writexml(filename, saveimg, bboxes, xmlpath):
    doc = Document()
 
    annotation = doc.createElement('annotation')
 
    doc.appendChild(annotation)
 
    folder = doc.createElement('folder')
 
    folder_name = doc.createTextNode('widerface')
    folder.appendChild(folder_name)
    annotation.appendChild(folder)
    filenamenode = doc.createElement('filename')
    filename_name = doc.createTextNode(filename)
    filenamenode.appendChild(filename_name)
    annotation.appendChild(filenamenode)
    source = doc.createElement('source')
    annotation.appendChild(source)
    database = doc.createElement('database')
    database.appendChild(doc.createTextNode('wider face Database'))
    source.appendChild(database)
    annotation_s = doc.createElement('annotation')
    annotation_s.appendChild(doc.createTextNode('PASCAL VOC2007'))
    source.appendChild(annotation_s)
    image = doc.createElement('image')
    image.appendChild(doc.createTextNode('flickr'))
    source.appendChild(image)
    flickrid = doc.createElement('flickrid')
    flickrid.appendChild(doc.createTextNode('-1'))
    source.appendChild(flickrid)
    owner = doc.createElement('owner')
    annotation.appendChild(owner)
    flickrid_o = doc.createElement('flickrid')
    flickrid_o.appendChild(doc.createTextNode('muke'))
    owner.appendChild(flickrid_o)
    name_o = doc.createElement('name')
    name_o.appendChild(doc.createTextNode('muke'))
    owner.appendChild(name_o)
 
    size = doc.createElement('size')
    annotation.appendChild(size)
 
    width = doc.createElement('width')
    width.appendChild(doc.createTextNode(str(saveimg.shape[1])))
    height = doc.createElement('height')
    height.appendChild(doc.createTextNode(str(saveimg.shape[0])))
    depth = doc.createElement('depth')
    depth.appendChild(doc.createTextNode(str(saveimg.shape[2])))
 
    size.appendChild(width)
 
    size.appendChild(height)
    size.appendChild(depth)
    segmented = doc.createElement('segmented')
    segmented.appendChild(doc.createTextNode('0'))
    annotation.appendChild(segmented)
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        objects = doc.createElement('object')
        annotation.appendChild(objects)
        object_name = doc.createElement('name')
        object_name.appendChild(doc.createTextNode('face'))
        objects.appendChild(object_name)
        pose = doc.createElement('pose')
        pose.appendChild(doc.createTextNode('Unspecified'))
        objects.appendChild(pose)
        truncated = doc.createElement('truncated')
        truncated.appendChild(doc.createTextNode('0'))
        objects.appendChild(truncated)
        difficult = doc.createElement('difficult')
        difficult.appendChild(doc.createTextNode('0'))
        objects.appendChild(difficult)
        bndbox = doc.createElement('bndbox')
        objects.appendChild(bndbox)
        xmin = doc.createElement('xmin')
        xmin.appendChild(doc.createTextNode(str(bbox[0])))
        bndbox.appendChild(xmin)
        ymin = doc.createElement('ymin')
        ymin.appendChild(doc.createTextNode(str(bbox[1])))
        bndbox.appendChild(ymin)
        xmax = doc.createElement('xmax')
        xmax.appendChild(doc.createTextNode(str(bbox[0] + bbox[2])))
        bndbox.appendChild(xmax)
        ymax = doc.createElement('ymax')
        ymax.appendChild(doc.createTextNode(str(bbox[1] + bbox[3])))
        bndbox.appendChild(ymax)
    f = open(xmlpath, "w")
    f.write(doc.toprettyxml(indent=''))
    f.close()
 
rootdir = "/home/xx/faceDetection"
gtfile = "/home/xx/faceDetection/wider_face_split/wider_face_val_bbx_gt.txt"
im_folder = "/home/xx/faceDetection/WIDER_val/images"
fwrite = open("/home/xx/faceDetection/ImageSets/Main/val.txt", "w")
 
# wider_face_train_bbx_gt.txt的文件内容
# 第一行为名字
# 第二行为头像的数量 n
# 剩下的为n行人脸数据
# 以下为示例
# 0--Parade/0_Parade_marchingband_1_117.jpg
# 9
# 69 359 50 36 1 0 0 0 0 1
# 227 382 56 43 1 0 1 0 0 1
# 296 305 44 26 1 0 0 0 0 1
# 353 280 40 36 2 0 0 0 2 1
# 885 377 63 41 1 0 0 0 0 1
# 819 391 34 43 2 0 0 0 1 0
# 727 342 37 31 2 0 0 0 0 1
# 598 246 33 29 2 0 0 0 0 1
# 740 308 45 33 1 0 0 0 2 1
 
with open(gtfile, "r") as gt:
    while(True):
        gt_con = gt.readline()[:-1]
        if gt_con is None or gt_con == "":
            break;
        im_path = im_folder + "/" + gt_con;
        print(im_path)
        im_data = cv2.imread(im_path)
        if im_data is None:
            continue
        # 可视化的部分
        # cv2.imshow(im_path, im_data)
        # cv2.waitKey(0)
 
        numbox = int(gt.readline())
 
        # 获取每一行人脸数据
        bboxes = []
        if numbox == 0:  # numbox 为0 的情况处理
            gt.readline()
        else:
            for i in range(numbox):
                line = gt.readline()
                infos = line.split(" ")  # 用空格分割
                # x y w h .....
                bbox = (int(infos[0]), int(infos[1]), int(infos[2]), int(infos[3]))
                # 绘制人脸框
                # cv2.rectangle(im_data, (int(infos[0]), int(infos[1])),
                #               (int(infos[0]) + int(infos[2]), int(infos[1]) + int(infos[3])),
                #               color=(0, 0, 255), thickness=1)
                bboxes.append(bbox)  # 将一张图片的所有人脸数据加入bboxes
            # cv2.imshow(im_path, im_data)
            # cv2.waitKey(0)
            filename = gt_con.replace("/", "_")  # 将存储位置作为图片名称,斜杠转为下划线
            fwrite.write(filename.split(".")[0] + "\n")
            cv2.imwrite("{}/JPEGImages/{}".format(rootdir, filename), im_data)
            xmlpath = "{}/Annotations/{}.xml".format(rootdir, filename.split(".")[0])
            writexml(filename, im_data, bboxes, xmlpath)
fwrite.close()

二、VOC格式转为COCO格式

创建annotations,images,xml_annotations 这三个文件夹,第一个用于保存json文件,第二个用于保存图片,第三个用于保存已经分成train和val的xml的文件。
Widerface数据集 | widerface数据集转成YOLO格式_第3张图片
Widerface数据集 | widerface数据集转成YOLO格式_第4张图片
Widerface数据集 | widerface数据集转成YOLO格式_第5张图片

第一步:转成COCO格式

文件命名为:I_voc2coco.py

#### customized for crack detection dataset 
#### usage : python3 voc2coco.py xml_dir ./data/xml --json_file ./val.json


import sys
import os
import json
import xml.etree.ElementTree as ET
import glob

START_BOUNDING_BOX_ID = 1
PRE_DEFINE_CATEGORIES = {"face" : 0}


def get(root, name):
    vars = root.findall(name)
    return vars


def get_and_check(root, name, length):
    
    vars = root.findall(name)
    if len(vars) == 0:
        raise ValueError("Can not find %s in %s." % (name, root.tag))
    if length > 0 and len(vars) != length:
        raise ValueError(
            "The size of %s is supposed to be %d, but is %d."
            % (name, length, len(vars))
        )
    if length == 1:
        vars = vars[0]
    return vars


def get_filename_as_int(filename):
    try:
        # print(filename,filename[6:])
        filename = filename.replace("\\", "/")
        filename = os.path.splitext(os.path.basename(filename))[0]
        if filename[:5] == "India" :  return  int("2"+filename[6:])
        elif filename[:5] == "Japan" :  return  int("3"+filename[6:])
        else : return int("1"+filename[6:])
        
        #return int(filename[6:])
    except:
        raise ValueError("Filename %s is supposed to be an integer." % (filename))


def get_categories(xml_files):
    """Generate category name to id mapping from a list of xml files.
    
    Arguments:
        xml_files {list} -- A list of xml file paths.
    
    Returns:
        dict -- category name to id mapping.
    """
    acceptable_classes = ["car","truck","bus"]
    classes_names = []
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall("object"):
            classes_names.append(member[0].text)
    classes_names = list(set(classes_names))
    # for item in classes_names : 
    #     if item not in acceptable_classes : 
    #         classes_names.remove(item) 
    #         print("removed{}".format(item))
    # classes_names.sort()
    # print("clsnames : {}".format(classes_names))
    return {name: i for i, name in enumerate(classes_names)}


def convert(xml_files, json_file):
    json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}
    if PRE_DEFINE_CATEGORIES is not None:
        categories = PRE_DEFINE_CATEGORIES
    else:
        categories = get_categories(xml_files)
    bnd_id = START_BOUNDING_BOX_ID
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        path = get(root, "path")
        if len(path) == 1:
            filename = os.path.basename(path[0].text)
        elif len(path) == 0:
            filename = get_and_check(root, "filename", 1).text
        else:
            raise ValueError("%d paths found in %s" % (len(path), xml_file))
        ## The filename must be a number
        # import pdb; pdb.set_trace()
        # image_id = get_filename_as_int(filename)
        image_id = filename[:-4]
        size = get_and_check(root, "size", 1)
        width = int(get_and_check(size, "width", 1).text)
        height = int(get_and_check(size, "height", 1).text)
        image = {
            "file_name": filename,
            "height": height,
            "width": width,
            "id": filename[:-4],
        }
        json_dict["images"].append(image)
        ## Currently we do not support segmentation.
        #  segmented = get_and_check(root, 'segmented', 1).text
        #  assert segmented == '0'
        for obj in get(root, "object"):
            category = get_and_check(obj, "name", 1).text
            if category not in categories:
                continue
                new_id = len(categories)
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, "bndbox", 1)
            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1
            ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1
            xmax = int(get_and_check(bndbox, "xmax", 1).text)
            ymax = int(get_and_check(bndbox, "ymax", 1).text)
            assert xmax > xmin
            assert ymax > ymin
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {
                "area": o_width * o_height,
                "iscrowd": 0,
                "image_id": image_id,
                "bbox": [xmin, ymin, o_width, o_height],
                "category_id": category_id,
                "id": bnd_id,
                "ignore": 0,
                "segmentation": [],
            }
            json_dict["annotations"].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {"supercategory": "none", "id": cid, "name": cate}
        json_dict["categories"].append(cat)

    os.makedirs(os.path.dirname(json_file), exist_ok=True)
    json_fp = open(json_file, "w")
    json_str = json.dumps(json_dict, indent=4)
    json_fp.write(json_str)
    json_fp.close()


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="Convert Pascal VOC annotation to COCO format."
    )
    # parser.add_argument("xml_dir", help="Directory path to xml files.", type=str)
    # parser.add_argument("json_file", help="Output COCO format json file.", type=str)
    # args = parser.parse_args()

    xml_path = '/home/xx/faceDetection/xml_annotations/train'  # 这是xml文件所在的地址
    json_file = '/home/xx/faceDetection/annotations/train.json'  # 这是你要生成的json文件
    xml_files = glob.glob(os.path.join(xml_path, "*.xml"))

    # If you want to do train/test split, you can pass a subset of xml files to convert function.
    print("Number of xml files: {}".format(len(xml_files)))
    convert(xml_files, json_file)
    print("Success: {}".format(json_file))

第二步:从原来打乱的XML标注文件中提取出train和val

文件命名为:II_voc2coco.py

# coding:utf-8
import os
import shutil
from tqdm import tqdm
# 根据/data/data/UAV2017/ImageSets/Layout里面的trainval.txt和test.txt挑选出训练集和测试集
 
SPLIT_PATH = "/home/xx/faceDetection/data/wider_voc/ImageSets/Main"
IMGS_PATH = "/home/xx/faceDetection/data/wider_voc/JPEGImages"
TXTS_PATH = "/home/xx/faceDetection/data/wider_voc/Annotations"
 
TO_IMGS_PATH = '/home/xx/faceDetection/data/wider_coco/images'
TO_TXTS_PATH = '/home/xx/faceDetection/data/wider_coco/xml_annotations'
 
 
data_split = ['train.txt', 'val.txt']
to_split = ['train', 'val']

train_file = '/home/xx/faceDetection/data/wider_yolo/images_train.txt'
val_file = '/home/xx/faceDetection/data/wider_yolo/images_val.txt'
train_file_txt = ''
val_file_txt = ''
 
for index, split in enumerate(data_split):
    split_path = os.path.join(SPLIT_PATH, split)
    # import pdb; pdb.set_trace()
 
    to_imgs_path = os.path.join(TO_IMGS_PATH, to_split[index])
    if not os.path.exists(to_imgs_path):
        os.makedirs(to_imgs_path)
 
    to_txts_path = os.path.join(TO_TXTS_PATH, to_split[index])
    if not os.path.exists(to_txts_path):
        os.makedirs(to_txts_path)
 
    f = open(split_path, 'r')
    count = 1

    for line in tqdm(f.readlines(), desc="{} is copying".format(to_split[index])):
        # 复制图片
        src_img_path = os.path.join(IMGS_PATH, line.strip() + '.jpg')
        # import pdb; pdb.set_trace()
        dst_img_path = os.path.join(to_imgs_path, line.strip() + '.jpg')
        if os.path.exists(src_img_path):
            shutil.copyfile(src_img_path, dst_img_path)
        else:
            print("error file: {}".format(src_img_path))
        if to_split[index] == 'train':
            train_file_txt = train_file_txt + dst_img_path + '\n'
        elif to_split[index] == 'val':
            val_file_txt = val_file_txt + dst_img_path + '\n'
 
        # 复制txt标注文件
        src_txt_path = os.path.join(TXTS_PATH, line.strip() + '.xml')
        dst_txt_path = os.path.join(to_txts_path, line.strip() + '.xml')
        if os.path.exists(src_txt_path):
            shutil.copyfile(src_txt_path, dst_txt_path)
        else:
            print("error file: {}".format(src_txt_path))
    with open(train_file, 'w') as out_train:
        out_train.write(train_file_txt)

    with open(val_file, 'w') as out_val:
        out_val.write(val_file_txt)

三、VOC格式转成YOLO格式

首先创建images,labels用于存放图像和生成txt文件的标注文件,再分别创建train和val两个文件夹。

然后再创建images_train.txt和images_val.txt文件,使用后面的代码可以将图像路径保存到这两个文件中。
Widerface数据集 | widerface数据集转成YOLO格式_第6张图片
同样的,images和labels都需要分train和val。
Widerface数据集 | widerface数据集转成YOLO格式_第7张图片
Widerface数据集 | widerface数据集转成YOLO格式_第8张图片
注意,下面的代码都需要运行两次,分别是train和val。

第一步:提取标注文件夹里面的文件名

文件命名为:extrace.py

# P02 批量读取文件名(不带后缀)

import os

file_path = "/data/xxx/faceDetection/data/wider_coco/xml_annotations/train/"
path_list = os.listdir(file_path)  # os.listdir(file)会历遍文件夹内的文件并返回一个列表
# print(path_list)
path_name = []  # 把文件列表写入save.txt中


def saveList(pathName):
    for file_name in pathName:
        with open("/data/xxx/faceDetection/data/wider_coco/name_vtrain.txt", "a") as f:
            f.write(file_name.split(".")[0] + "\n")


def dirList(path_list):
    for i in range(0, len(path_list)):
        path = os.path.join(file_path, path_list[i])
    if os.path.isdir(path):
        saveList(os.listdir(path))


dirList(path_list)
saveList(path_list)

第二步:将xml格式转成yolo格式

文件命名为:voc_label.py

# 缺陷坐标xml转txt

import xml.etree.ElementTree as ET
import os


classes = ['face']  # 输入缺陷名称,必须与xml标注名称一致


train_file = '/data/ljj_data/faceDetection/data/wider_yolo/images_train.txt'  
train_file_txt = ''

wd = os.getcwd()

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    box = list(box)
    box[1] = min(box[1], size[0])   # 限制目标的范围在图片尺寸内
    box[3] = min(box[3], size[1])
    x = ((box[0] + box[1]) / 2.0) * dw
    y = ((box[2] + box[3]) / 2.0) * dh
    w = (box[1] - box[0]) * dw
    h = (box[3] - box[2]) * dh
    return (x, y, w, h)   


def convert_annotation(image_id):
    in_file = open('/data/ljj_data/faceDetection/data/wider_coco/xml_annotations/train/%s.xml' % (image_id))  # 读取xml文件路径

    out_file = open('/data/ljj_data/faceDetection/data/wider_yolo/labels_temp/train/%s.txt' % (image_id), 'w')  # 需要保存的txt格式文件路径
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:  # 检索xml中的缺陷名称
            continue
        cls_id = classes.index(cls)
        
        # if cls_id == 0 or cls_id == 11:
        #     continue
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


image_ids_train = open('/data/ljj_data/faceDetection/data/wider_coco/name_train.txt').read().strip().split()  # 读取xml文件名索引

for image_id in image_ids_train:
    convert_annotation(image_id)

anns = os.listdir('/data/ljj_data/faceDetection/data/wider_coco/xml_annotations/train/')
for ann in anns:
    ans = ''
    outpath = '/data/ljj_data/faceDetection/data/wider_yolo/labels_temp/train/' + ann
    if ann[-3:] != 'xml':
        continue
    train_file_txt = train_file_txt + '/data/ljj_data/faceDetection/data/wider_yolo/images_temp/train/' + ann[:-3] + 'jpg\n'
    # import pdb
    # pdb.set_trace()

with open(train_file, 'w') as outfile:
    outfile.write(train_file_txt)

四、在转换过程中查看框是否正确

1. 查看VOC是否转换正确(文件命名为:xml_draw.py)

import os
import os.path
import xml.etree.cElementTree as ET
import cv2
def draw(image_path, xml_path, root_saved_path):
    """
    图片根据标注画框
    """
    src_img_path = image_path
    src_ann_path = xml_path
    for file in os.listdir(src_ann_path):
        # print(file)
        file_name, suffix = os.path.splitext(file)
        # import pdb
        # pdb.set_trace()
        if suffix == '.xml':
            # print(file)
            xml_path = os.path.join(src_ann_path, file)
            image_path = os.path.join(src_img_path, file_name+'.jpg')
            img = cv2.imread(image_path)
            tree = ET.parse(xml_path)
            root = tree.getroot()
            # import pdb
            # pdb.set_trace()
            for obj in root.iter('object'):
                name = obj.find('name').text
                xml_box = obj.find('bndbox')
                x1 = int(xml_box.find('xmin').text)
                x2 = int(xml_box.find('xmax').text)
                y1 = int(xml_box.find('ymin').text)
                y2 = int(xml_box.find('ymax').text)
                cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), thickness=2)
                # 字为绿色
                # cv2.putText(img, name, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 255, 0), thickness=2)
            cv2.imwrite(os.path.join(root_saved_path, file_name+'.jpg'), img)


if __name__ == '__main__':
    image_path = "/home/xx/faceDetection/data/wider_coco/images/val"
    xml_path = "/home/xx/faceDetection/data/wider_coco/xml_annotations/val"
    root_saved_path = "/home/xx/faceDetection/data/xml_output"
    draw(image_path, xml_path, root_saved_path)

2. 查看COCO是否转换正确(文件命名为:json_draw.py)

import cv2
# import pandas as pd
import json
import os
 
# ground-truth
def select(json_path, outpath, image_path):
    json_file = open(json_path)
    infos = json.load(json_file)
    images = infos["images"]
    annos = infos["annotations"]
    assert len(images) == len(images)
    # import pdb;pdb.set_trace()
    for i in range(len(images)):
        im_id = images[i]["id"]
        im_path = image_path + images[i]["file_name"]
        img = cv2.imread(im_path)
        for j in range(len(annos)):
            if annos[j]["image_id"] == im_id:
                x, y, w, h = annos[j]["bbox"]
                x, y, w, h = int(x), int(y), int(w), int(h)
                x2, y2 = x + w, y + h
                # object_name = annos[j][""]
                img = cv2.rectangle(img, (x, y), (x2, y2), (0, 255, 0), thickness=1)
                img_name = outpath + images[i]["file_name"]
                # import pdb;pdb.set_trace()
                cv2.imwrite(img_name, img)
                # continue
        # print(i)
    print("Done!")

# predict
# def select(json_path, outpath, image_path):
#     json_file = open(json_path)
#     infos = json.load(json_file)
#     for i in range(len(infos)):
#         im_id = infos[i]["image_id"]
#         im_path = image_path + str(infos[i]["image_id"]) + '.jpg' 
#         # import pdb;pdb.set_trace()
#         img_name = outpath + str(infos[i]["image_id"]) + '.jpg'
#         score = str(infos[i]["score"])
#         if not os.path.exists(img_name):
#             img = cv2.imread(im_path)
#         else: 
#             img = cv2.imread(img_name)
#         # if float(score) < 0.5:
#         #     continue
#         # else:
#         x, y, w, h = infos[i]["bbox"]
#         x, y, w, h = int(x), int(y), int(w), int(h)
#         x2, y2 = x + w, y + h
#         c_x, c_y = int((x + x2) / 2), int((y + y2) / 2)
#         cla = str(infos[i]["category_id"])
#         # import pdb;pdb.set_trace()
#         # img = cv2.rectangle(img, (x, y), (x2, y2), (0, 255, 255), thickness=2)
#         if float(score) <= 0.3:
#             cv2.circle(img, (c_x, c_y), 5, (0,0,int(255*float(score))), -1) # red
#             continue
#         elif float(score) > 0.3 and float(score) <= 0.6:
#             cv2.circle(img, (c_x, c_y), 5, (int(255*float(score)),255,0), -1)  # green
#         elif float(score) > 0.6:
#             cv2.circle(img, (c_x, c_y), 5, (0,int(255*float(score)),255), -1)   # yellow
#             # cv2.rectangle(img, (x, y), (x2, y2), (0, 0, 255), thickness=2)
#             # cv2.putText(img, score, (x, y + 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
#             # cv2.putText(img, cla,(c_x, c_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
#         img_name = outpath + str(infos[i]["image_id"]) + '.jpg'
#         # import pdb;pdb.set_trace()
#         cv2.imwrite(img_name, img)
#     print("Done!")


if __name__ == "__main__":
    json_path = "/home/xx/faceDetection/data/wider_coco/annotations/val.json"
    out_path = "/home/xx/faceDetection/data/json_output/"
    image_path = "/home/xx/faceDetection/data/wider_coco/images/val/"
    select(json_path, out_path, image_path)

你可能感兴趣的:(#,航拍,&,人脸数据集)