自动求导 动手学深度学习 pytorch

自动求导 动手学深度学习 pytorch_第1张图片
自动求导 动手学深度学习 pytorch_第2张图片
自动求导 动手学深度学习 pytorch_第3张图片
自动求导 动手学深度学习 pytorch_第4张图片
自动求导 动手学深度学习 pytorch_第5张图片
自动求导 动手学深度学习 pytorch_第6张图片
自动求导 动手学深度学习 pytorch_第7张图片
自动求导 动手学深度学习 pytorch_第8张图片
自动求导 动手学深度学习 pytorch_第9张图片
自动求导 动手学深度学习 pytorch_第10张图片
自动求导 动手学深度学习 pytorch_第11张图片
自动求导 动手学深度学习 pytorch_第12张图片

例子:

import torch

x = torch.arange(4.0)
x
tensor([0., 1., 2., 3.])
x.requires_grad_(True) # x = torch.arange(4.0, requires_grad=True)
x.grad
y = 2 * torch.dot(x, x)
y
tensor(28., grad_fn=)
y.backward()
x.grad
tensor([ 0.,  4.,  8., 12.])
x.grad == 4 * x
tensor([True, True, True, True])
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
tensor([1., 1., 1., 1.])
x.grad.zero_()
y = x * x
y.sum().backward()
x.grad
tensor([0., 2., 4., 6.])
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x

z.sum().backward()
x.grad == u
tensor([True, True, True, True])
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x
tensor([True, True, True, True])
def f(a):
  b = a * 2
  while b.norm() < 1000:
    b = b * 2
  if b.sum() > 0:
    c = b
  else:
    c = 100 * b
  return c

a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()

a.grad == d / a
tensor(True)
bb = torch.arange(4.0)
print(bb)
bbn = bb.norm()
print(bbn)
tensor([0., 1., 2., 3.])
tensor(3.7417)

norm() 函数表示每个数字的平方之和 开根号 (0 ** 2 + 1 ** 2 + 2 ** 2 + 3 ** 2) ^(1/2)

参考

https://www.bilibili.com/video/BV1KA411N7Px

你可能感兴趣的:(李沐动手学深度学习,自动求导,pytorch)