【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~

前言

作者 :“程序员梨子”

**文章简介 **:本篇文章主要是写了opencv的多份小程序!

**文章源码获取 **: 为了感谢每一个关注我的小可爱每篇文章的项目源码都是无偿分

享滴

点这里蓝色这行字体自取,需要什么源码记得说标题名字哈!私信我也可!

欢迎小伙伴们 点赞、收藏⭐、留言

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第1张图片

正文

在学习Opencv的时候发现一些有趣的功能,简短的代码实现的效果还是挺不错滴!

嘻嘻,学习完就立马分享给大家啦!希望大家喜欢!

图像的颜色空间

彩色图像比灰度图像拥有更丰富的信息,它的每个像素通常是由红(R)、绿(G)、蓝(B)3个

分量来表示的,每个分量介于0~255之间。

图像中呈现的不同的颜色都是由R、G、B这3种颜色混合而成的。在OpenCV里面,彩色图像拥有3

个颜色通道,但是通道的顺序是可以变换的,RGB、BRG、BGR、GBR、GRB都有可能。

在读取一幅图像的时候,我们对于图像的颜色通道排布并不清楚,因此需要先把图像的颜色通道固

定下来,这就需要调用OpenCV的cvtColor()函数。

cvtColor()函数的功能是对图像进行颜色空间变换,原型如下:

dst=cv2.cvtColor(src, code )

参数说明:

  • src:输入图像即要进行颜色空间变换的原图像,可以是Mat类。

  • code:转换的代码或标识,即在此确定将什么制式的图片转换成什么制式的图片,后面会详细讲述。

函数输出进行颜色空间变换后存储图像。

通过调用cvtColor()函数,还可以将一幅彩色图像转换成灰度图像下面会给大家演示的哈!

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第2张图片

  • 程序:彩色图像转灰度图像示例

    color2gray.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('1.jpg')
   img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
                                          #从彩色图像转化成灰度图像
   cv2.imshow('img2.bmp ', img2)
   cv2.waitKey(0)
if __name__ == '__main__':
   main()

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第3张图片

注意:cvtColor()函数还可以通过改变参数cv2.COLOR_RGB2BRG等改变图像颜色通道的排列顺

序。另外也可以直接在读取图像函数imread时设置参数为0,直接将彩色图像读取为灰度图像,

img = cv2.imread('1.jpg',0)。

2)彩色图像的通道分离和混合

灰度图像是单通道的,彩色图像拥有R、G、B三个颜色通道。因此在图像处理时,经常把颜色通

道分离,单独处理一个通道的数组,然后再合并成一幅彩色图像。

在实际的代码编写中,只需要调用OpenCV中的split()和merge()函数就可以实现图像的通道分离和

合并。split()函数的功能是将多通道的矩阵分离成单通道矩阵,原型如下:

[,mv]=cv2.split (src)

参数说明:输入参数为要进行分离的图像矩阵,输出参数为一个Mat数组。

merge()函数的功能是将多个单通道图像合成一幅多通道图像,原型如下:

dst=cv2.merge([,dst] )

参数说明:输入参数可以是Mat数组,输出为合并后的图像矩阵。

3)彩色图像的通道分离和混合程序示例

输入一幅彩色图像,通过上面的程序将其分割成R、G、B这3个通道的图像并显示。在分割前需要

先确定图像的颜色通道分布,因此先调用cvtColor()函数固定颜色通道。

  • 程序彩色图像通道分离示例:

    colorsplit.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('1.jpg')    
   img2 = cv2.cvtColor(img,cv2.COLOR_BRG2RGB)
   r,g,b = cv2.split(img2)   #img分离成三个单通道的图像
   cv2.imshow("Red", r)
   cv2.imshow("Green", g)
   cv2.imshow("Blue", b)
   cv2.waitKey(0)
if __name__ == '__main__':
   main()

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第4张图片

▲ colorsplit.py程序运行结果

可以看出,在图像通道分离后,不同颜色通道的图像显示深浅不一,单通道的图像呈现该颜色通道

的灰度信息。接下来把这3个颜色通道混合一下,在代码中加入一行代码:img3 =

cv2.merge([b,g,r]);,这样img3又回到了原来输入的彩色图像样式,显示效果如图3.11所示。

 

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第5张图片

4)彩色图像的二值化

图像的二值化是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白

效果。彩色图像二值化最简单的步骤如下:

  1. 彩色图像转灰度。

  2. 图像阈值化处理,即像素值高于某阈值的像素赋值为255,反之为0。

其中,阈值的操作会调用OpenCV的threshold()函数。

threshold()函数声明如下:

ret, dst = cv2.threshold(src, thresh, maxval, type);

函数功能:实现图像固定阈值的二值化。

参数说明:

  • src:输入图,只能输入单通道图像,通常来说为灰度图。

  • dst:输出图。

  • thresh:阈值。

  • maxval:当像素值超过了阈值(或者小于阈值,根据type来决定)时所赋予的值。

  • type:二值化操作的类型,包含5种类型,即cv2.THRESH_BINARY、cv2.THRESH_BINARY_INV、cv2.THRESH_TRUNC、cv2.THRESH_TOZERO和cv2.THRESH_TOZERO_INV。

  • 程序彩色图像二值化示例:

    colorthreshold.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('1.jpg',0)
   thresh1,dst =cv2.threshold(img,127,255,cv2.THRESH_BINARY)
                                               #图像二值化
   cv2.imshow("dst", dst)
   cv2.waitKey(0)
if __name__ == '__main__':
   main()

高于127的像素全部置为255,低于的全部置为0,得到如图3.12所示的输出结果。

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第6张图片

 05 彩色图像的遍历

灰度图像的遍历按照访问二维数组的方式得到坐标位置的像素。那对于彩色图像呢?彩色图像可以看出是3维数组,遍历方式参见程序。

程序遍历彩色图像示例:color1.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('1.jpg')    
   height,width,n = img.shape #得到图片的宽高和维度
   img2 = img.copy()  #复制一个跟img相同的新图片
   #宽高两个维度遍历图片
   for i in range(height):
      for j in range(width):
         img2[i, j][0] = 0 #将第一个通道内的元素重新赋值
   cv2.imshow('img2.jpg', img2)
   cv2.waitKey(0)
if __name__ == '__main__':
   main()

由于第一个通道里面的颜色信息全部变为了0:

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第7张图片

▲图 color1.py程序运行结果

在读取不同通道的图像像素值时,需要先确定图像的通道排列是RGB还是BRG。

06 彩色图像和灰度图像的转换

经过前面的学习,我们知道彩色图像转成灰度图像有3种路径:

  • imread读取图像的时候直接设置参数为0,彩色图像自动被读成灰度图像。

  • 调用cvtColor()函数,参数设置为cv2.COLOR_BGR2GRAY。

  • 调用split()函数,可以将一幅彩色图像分离成3个单通道的灰度图像。

那么灰度图像有没有可能转换成彩色图像呢?

我们知道灰度图像是单通道的,彩色图像是RGB 3这个颜色通道。那么是否可以人为地增加图像的

通道,伪造出另外两个通道,而另外两个通道可以随机地赋值呢?

程序 增加图像通道示例:

gray2color1.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('gray1.jpg')    
   gray = np.zeros((512, 512, 3), np.uint8)  # 生成一个空彩色图像
   height,width,n = img.shape
   #图像像素级遍历
   for i in range(height):
      for j in range(width):
         gray[i, j][0] = img[i, j][0]
         gray[i, j][1] = 0
         gray[i, j][2] = 0
   cv2.imshow('gray.jpg', gray)
   cv2.waitKey(0)
=if __name__ == '__main__':
   main()

上述程序新建了一个3通道的空的彩色图像,然后将读取的灰度图像放在新建的彩色图像的第一个

通道,也就是B通道,其他两个通道赋值0,所以图像整体呈现蓝色,程序运行结果:

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第8张图片

▲gray2color1.py程序运行结果

上述方法转换的图像颜色很单一。有没有更加智能的方法呢?在摄像技术不是很成熟的时期,人们

给拍摄出来的黑白照片上色,发明了一种伪彩色图像技术。在OpenCV里面,可以用预定义好的

Colormap(色度图)来给图片上色。

  • 程序 伪彩色图像技术示例:

    gray2color2.py

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
#定义main()函数
def main():
   img = cv2.imread('gray1.jpg')    
   im_color = cv2.applyColorMap(img, cv2.COLORMAP_JET)  #色度图上色
   cv2.imshow("im_color.jpg", im_color)
   cv2.waitKey(0)
if __name__ == '__main__':
   main()

程序运行结果。伪彩色图像目前主要应用在对高度、压力、密度、湿度等描述上,彩

色数据可视化。

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第9张图片

总结

关注小编获取更多精彩内容!记得点击传送门哈

记得三连哦! 如需打包好的源码+素材免费分享滴!传送门

【Opencv实战】简易版“美颜”来啦—再见旧照片,Python一键美颜哦~_第10张图片

你可能感兴趣的:(程序员,Python,人工智能,python,人工智能,opencv,源码合集,机器学习)