深度学习目标检测(YoloV5)项目——从0开始到项目落地部署

前言

训练和开发环境是win10,显卡RTX3080;cuda10.2,cudnn7.1;OpenCV4.5;yolov5用的是5s的模型,2020年8月13日的发布v3.0这个版本; ncnn版本是20210525;C++ IDE vs2019,Anaconda 3.5。

一、环境安装

1.anaconda环境

  • 创建环境
 conda create --name yolov5 python=3.7
 activate yolov5
  • 退出环境
conda deactivate

查看已安装的环境

conda info --env
  • 删除环境
conda env remove -n yolov5

2.安装依赖

 git clone https://github.com/ultralytics/yolov5.git
 cd yolov5
 pip install -r requirements.txt

或者

git clone https://github.com/ultralytics/yolov5.git
cd yolov5
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
pip install cython matplotlib tqdm opencv-python tensorboard scipy pillow onnx pyyaml pandas seaborn

win下尽量不要用cuda11,试了几次都是要么找不到GPU,要么跑到一半崩了。

二、数据处理

1.数据标注用labelme,身份证的数据我从网上找了一些公开的模板数据,然后用对抗生成了一批数据进行标注,300张样本左右,labelme标注出来的数据格式是xml。
2.在yolo/data 目录下创建一个存放数据集的目录,目录下再分两个目录,JPEGImages存放原始图像,Annotations存在放标签文件。
3.数据标注用labelme标注成.xml,但yolo要的标签格式是.txt,所以要把数据转换过来。

  • 数据生成训练集与验证集,在data/xxxx目录下会 train.txt 和val.txt,输出所有标注的类名,并在JPEGImages下生成与文件名对应的.txt文件。
    执行命令:
python generate_txt.py --img_path data/XXXXX/JPEGImages --xml_path data/XXXXX/Annotations --out_path data/XXXXX
  • 输出标注的类名样例:如[‘ida’, ‘idb’]。

  • 生成的.txt文件
    类名 归一化后的目标坐标点

0 0.518 0.7724887556221889 0.296 0.15367316341829085
3 0.4475 0.7694902548725637 0.089 0.08620689655172414
  • 数据处理代码
  • generate_txt.py
import os
import glob
import argparse
import random
import xml.etree.ElementTree as ET
from PIL import Image
from tqdm import tqdm

def get_all_classes(xml_path):
    xml_fns = glob.glob(os.path.join(xml_path, '*.xml'))
    class_names = []
    for xml_fn in xml_fns:
        tree = ET.parse(xml_fn)
        root = tree.getroot()
        for obj in root.iter('object'):
            cls = obj.find('name').text
            class_names.append(cls)
    return sorted(list(set(class_names)))

def convert_annotation(img_path, xml_path, class_names, out_path):
    output = []
    im_fns = glob.glob(os.path.join(img_path, '*.jpg'))
    for im_fn in tqdm(im_fns):
        if os.path.getsize(im_fn) == 0:
            continue
        xml_fn = os.path.join(xml_path, os.path.splitext(os.path.basename(im_fn))[0] + '.xml')
        if not os.path.exists(xml_fn):
            continue
        img = Image.open(im_fn)
        height, width = img.height, img.width
        tree = ET.parse(xml_fn)
        root = tree.getroot()
        anno = []
        xml_height = int(root.find('size').find('height').text)
        xml_width = int(root.find('size').find('width').text)
        if height != xml_height or width != xml_width:
            print((height, width), (xml_height, xml_width), im_fn)
            continue
        for obj in root.iter('object'):
            cls = obj.find('name').text
            cls_id = class_names.index(cls)
            xmlbox = obj.find('bndbox')
            xmin = int(xmlbox.find('xmin').text)
            ymin = int(xmlbox.find('ymin').text)
            xmax = int(xmlbox.find('xmax').text)
            ymax = int(xmlbox.find('ymax').text)
            cx = (xmax + xmin) / 2.0 / width
            cy = (ymax + ymin) / 2.0 / height
            bw = (xmax - xmin) * 1.0 / width
            bh = (ymax - ymin) * 1.0 / height
            anno.append('{} {} {} {} {}'.format(cls_id, cx, cy, bw, bh))
        if len(anno) > 0:
            output.append(im_fn)
            with open(im_fn.replace('.jpg', '.txt'), 'w') as f:
                f.write('\n'.join(anno))
    random.shuffle(output)
    train_num = int(len(output) * 0.9)
    with open(os.path.join(out_path, 'train.txt'), 'w') as f:
        f.write('\n'.join(output[:train_num]))
    with open(os.path.join(out_path, 'val.txt'), 'w') as f:
        f.write('\n'.join(output[train_num:]))

def parse_args():
    parser = argparse.ArgumentParser('generate annotation')
    parser.add_argument('--img_path', type=str, help='input image directory')
    parser.add_argument('--xml_path', type=str, help='input xml directory')
    parser.add_argument('--out_path', type=str, help='output directory')
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse_args()
    class_names = get_all_classes(args.xml_path)
    print(class_names)
    convert_annotation(args.img_path, args.xml_path, class_names, args.out_path)

三、模型训练

1.model/yolov5s.yaml,更改nc数目。

# parameters
nc: 2  # 检测总类别
depth_multiple: 0.33  # model depth multiple 网络的深度系数
width_multiple: 0.50  # layer channel multiple 卷积核的系数

# anchors 候选框,可以改成自己目标的尺寸,也可以增加候选框
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone: #特征提取模块
  # [from, number, module, args]
  # from - 输入是什么,-1:上一层的输出结果;
  # number - 该层的重复的次数,要乘以系数,小于1则等于1 源码( n = max(round(n * gd), 1) if n > 1 else n)
  # module - 层的名字
  # args - 卷积核的个数
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2  # 64要乘以卷积核的个数 64*0.5 = 32个特征图
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5) [17,20,23] #17层、20层、23层;
  ]

2.在data目录下添加一个xxx.yaml训练数据配置文件。

# download command/URL (optional)
download: bash data/scripts/get_voc.sh

# 训练集txt与验证集txt路径
train: data/xxx/train.txt
val: data/xxx/val.txt

# 总类别数
nc: 2

# 类名
names: ['ida', 'idb']

3.训练参数

	parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')  # 权重文件,是否在使用预训练权重文件
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')  # 网络配置文件
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') # 训练数据集目录
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')  #超参数配置文件
    parser.add_argument('--epochs', type=int, default=300) # 训练迭代次数
    parser.add_argument('--batch-size', type=int, default=32, help='total batch size for all GPUs') # batch-size大小
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') # 训练图像大小
    parser.add_argument('--rect', action='store_true', help='rectangular training') #矩形训练
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')  # 是否接着上一次的日志权重继续训练
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # 不保存
    parser.add_argument('--notest', action='store_true', help='only test final epoch')  # 不测试
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') #超参数范围
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') #是否缓存图像
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 用GPU或者CPU进行训练
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') #是否多尺度训练
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') # 是否一个类别
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') # 优化器先择
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
    parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') #win不能改,win上改不改都容易崩
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()

4.训练命令

  • 单卡:
python train.py --cfg models/yolov5s.yaml --data data/ODID.yaml --hyp data/hyps/hyp.scratch.yaml --epochs 100 --multi-scale --device 0
  • 多卡:
python train.py --cfg models/yolov5s.yaml --data data/ODID.yaml --hyp data/hyps/hyp.scratch.yaml --epochs 100 --multi-scale --device 01

5.测试模型

python test.py --weights runs/train/exp/weights/best.pt --data data/ODID.yaml --device 0 --verbose
--weights: 训练得到的模型
--data:数据配置文件.txt
--device:选择gpu进行评测
--verbose:是否打印每一类的评测指标

OpenCV DNN C++ 推理

1.由于OpenCV DNN中的slice层不支持step为2,所以在转换模型时需要修改代码,修改的地方在models/common.py中Focus类

  • 修改前:
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
  • 修改后
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        #return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
        return self.conv(x)

2.转换模型

python models/export.py --weights runs/exp/weights/best.pt
# --weights: 训练得到的模型

运行后,onnx模型保存为了runs/exp/weights/best.onnx,这个模型就可以用OpenCV DNN进行推理。

3.DNN C++推理

#include 
#include 
#include 
#include 
#include 
#include 
#include 


void imshow(std::string name, const cv::Mat& cv_src) 
{
	cv::namedWindow(name, 0);
	int max_rows = 800;
	int max_cols = 800;
	if (cv_src.rows >= cv_src.cols && cv_src.rows > max_rows)
	{
		cv::resizeWindow(name, cv::Size(cv_src.cols * max_rows / cv_src.rows, max_rows));
	}
	else if (cv_src.cols >= cv_src.rows && cv_src.cols > max_cols)
	{
		cv::resizeWindow(name, cv::Size(max_cols, cv_src.rows * max_cols / cv_src.cols));
	}
	cv::imshow(name, cv_src);
}

inline float sigmoid(float x)
{
	return 1.f / (1.f + exp(-x));
}

void sliceAndConcat(cv::Mat& img, cv::Mat* input)
{
	const float* srcData = img.ptr<float>();
	float* dstData = input->ptr<float>();
	using Vec12f = cv::Vec<float, 12>;
	for (int i = 0; i < input->size[2]; i++)
	{
		for (int j = 0; j < input->size[3]; j++)
		{
			for (int k = 0; k < 3; ++k)
			{
				dstData[k * input->size[2] * input->size[3] + i * input->size[3] + j] =
					srcData[k * img.size[2] * img.size[3] + 2 * i * img.size[3] + 2 * j];
			}
			for (int k = 0; k < 3; ++k)
			{
				dstData[(3 + k) * input->size[2] * input->size[3] + i * input->size[3] + j] =
					srcData[k * img.size[2] * img.size[3] + (2 * i + 1) * img.size[3] + 2 * j];
			}
			for (int k = 0; k < 3; ++k) 
			{
				dstData[(6 + k) * input->size[2] * input->size[3] + i * input->size[3] + j] =
					srcData[k * img.size[2] * img.size[3] + 2 * i * img.size[3] + 2 * j + 1];
			}
			for (int k = 0; k < 3; ++k)
			{
				dstData[(9 + k) * input->size[2] * input->size[3] + i * input->size[3] + j] =
					srcData[k * img.size[2] * img.size[3] + (2 * i + 1) * img.size[3] + 2 * j + 1];
			}
		}
	}
}

std::vector<cv::String> getOutputNames(const cv::dnn::Net& net)
{
	static std::vector<cv::String> names;
	if (names.empty())
	{
		std::vector<int> outLayers = net.getUnconnectedOutLayers();
		std::vector<cv::String> layersNames = net.getLayerNames();
		names.resize(outLayers.size());
		for (size_t i = 0; i < outLayers.size(); i++)
		{
			names[i] = layersNames[outLayers[i] - 1];
		}
	}
	return names;
}

void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame,
	const std::vector<std::string> &classes)
{
	cv::rectangle(frame, cv::Point(left, top), cv::Point(right, bottom), cv::Scalar(0, 255, 0), 3);
	std::string label = cv::format("%.2f", conf);
	if (!classes.empty()) {
		CV_Assert(classId < (int)classes.size());
		label = classes[classId] + ": " + label;
	}
	int baseLine;
	cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
	top = std::max(top, labelSize.height);
	cv::rectangle(frame, cv::Point(left, top - round(1.5 * labelSize.height)), cv::Point(left + round(1.5 * labelSize.width), top + baseLine), cv::Scalar(0, 255, 0), cv::FILLED);
	cv::putText(frame, label, cv::Point(left, top), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(), 2);
}

void postprocess(cv::Mat& cv_src, std::vector<cv::Mat>& outs, const std::vector<std::string>& classes, int net_size) 
{
	float confThreshold = 0.4f;
	float nmsThreshold = 0.5f;
	std::vector<int> classIds;
	std::vector<float> confidences;
	std::vector<cv::Rect> boxes;
	int strides[] = { 8, 16, 32 };
	std::vector<std::vector<int> > anchors = 
	{
		{ 10,13, 16,30, 33,23 },
		{ 30,61, 62,45, 59,119 },
		{ 116,90, 156,198, 373,326 }
	};
	for (size_t k = 0; k < outs.size(); k++)
	{
		float* data = outs[k].ptr<float>();
		int stride = strides[k];
		int num_classes = outs[k].size[4] - 5;
		for (int i = 0; i < outs[k].size[2]; i++)
		{
			for (int j = 0; j < outs[k].size[3]; j++)
			{
				for (int a = 0; a < outs[k].size[1]; ++a)
				{
					float* record = data + a * outs[k].size[2] * outs[k].size[3] * outs[k].size[4] +
						i * outs[k].size[3] * outs[k].size[4] + j * outs[k].size[4];
					float* cls_ptr = record + 5;
					for (int cls = 0; cls < num_classes; cls++) 
					{
						float score = sigmoid(cls_ptr[cls]) * sigmoid(record[4]);
						if (score > confThreshold)
						{
							float cx = (sigmoid(record[0]) * 2.f - 0.5f + (float)j) * (float)stride;
							float cy = (sigmoid(record[1]) * 2.f - 0.5f + (float)i) * (float)stride;
							float w = pow(sigmoid(record[2]) * 2.f, 2) * anchors[k][2 * a];
							float h = pow(sigmoid(record[3]) * 2.f, 2) * anchors[k][2 * a + 1];
							float x1 = std::max(0, std::min(cv_src.cols, int((cx - w / 2.f) * (float)cv_src.cols / (float)net_size)));
							float y1 = std::max(0, std::min(cv_src.rows, int((cy - h / 2.f) * (float)cv_src.rows / (float)net_size)));
							float x2 = std::max(0, std::min(cv_src.cols, int((cx + w / 2.f) * (float)cv_src.cols / (float)net_size)));
							float y2 = std::max(0, std::min(cv_src.rows, int((cy + h / 2.f) * (float)cv_src.rows / (float)net_size)));
							classIds.push_back(cls);
							confidences.push_back(score);
							boxes.push_back(cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)));
						}
					}
				}
			}
		}
	}
	std::vector<int> indices;
	cv::dnn::NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
	for (size_t i = 0; i < indices.size(); i++) 
	{
		int idx = indices[i];
		cv::Rect box = boxes[idx];
		drawPred(classIds[idx], confidences[idx], box.x, box.y,
			box.x + box.width, box.y + box.height, cv_src, classes);
	}
}

int main(int argc, char* argv[])
{
	std::string path = "images";
	std::vector<std::string> filenames;
	cv::glob(path, filenames, false);

	for (auto name : filenames)
	{
		cv::Mat cv_src = cv::imread(name);
		if (cv_src.empty())
		{
			continue;
		}

		std::vector<std::string> class_names{ "ida","idb" };
		
		int net_size = 640;
		cv::Mat blob = cv::dnn::blobFromImage(cv_src, 1.0 / 255, cv::Size(net_size, net_size),
			cv::Scalar(0, 0, 0), true, false);
		cv::dnn::Net net = cv::dnn::readNet("model/ODID_DNN.onnx");
		const int sz[] = { 1, 12, net_size / 2, net_size / 2 };
		cv::Mat input = cv::Mat(4, sz, blob.type());

		sliceAndConcat(blob, &input);
		net.setInput(input);
		auto t0 = cv::getTickCount();
		std::vector<cv::Mat> outs;
		net.forward(outs, getOutputNames(net));
		postprocess(cv_src, outs, class_names, net_size);
		auto t1 = cv::getTickCount();
		std::cout << "elapsed time: " << (t1 - t0) * 1000.0 / cv::getTickFrequency() << "ms" << std::endl;

		imshow("img", cv_src);
		cv::waitKey();
	}

	return 0;
}

四、NCNN推理

NCNN是目前我用到过最好用,也是最容易白嫖的推理加速库,特别是在移动端部署的时候,真的不能更好的了,在些万分感激nihui大佬的无私贡献。这里用的是ncnn编好的ncnn-20210525-windows-vs2019这个版本。
关于yolov5 ncnn推理可以看nihui大佬的知乎。

1.模型简化
https://github.com/daquexian/onnx-simplifier
2 .onnx转ncnn模型

onnx2ncnn yolov5s-sim.onnx yolov5s.param yolov5s.bin
  • onnx转为 ncnn 模型,会输出很多 Unsupported slice step!,这是focus模块转换的报错.

  • Focus模块在v5中是图片进入backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长的差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。以yolov5s为例,原始的640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过一次卷积操作,最终变成320 × 320 × 64的特征图。

  • yolov5 Focus模块实现

class Focus(Layer):
    def __init__(self, filters, kernel_size, strides=1, padding='SAME'):
        super(Focus, self).__init__()
        self.conv = Conv(filters, kernel_size, strides, padding)

    def call(self, x):
        return self.conv(tf.concat([x[..., ::2, ::2, :],
                                    x[..., 1::2, ::2, :],
                                    x[..., ::2, 1::2, :],
                                    x[..., 1::2, 1::2, :]],
                                   axis=-1))

对应的模型结构:

Split            splitncnn_input0         1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3
Crop             Slice_4                  1 1 images_splitncnn_3 171 -23309=1,0 -23310=1,2147483647 -23311=1,1
Crop             Slice_9                  1 1 171 176 -23309=1,0 -23310=1,2147483647 -23311=1,2
Crop             Slice_14                 1 1 images_splitncnn_2 181 -23309=1,1 -23310=1,2147483647 -23311=1,1
Crop             Slice_19                 1 1 181 186 -23309=1,0 -23310=1,2147483647 -23311=1,2
Crop             Slice_24                 1 1 images_splitncnn_1 191 -23309=1,0 -23310=1,2147483647 -23311=1,1
Crop             Slice_29                 1 1 191 196 -23309=1,1 -23310=1,2147483647 -23311=1,2
Crop             Slice_34                 1 1 images_splitncnn_0 201 -23309=1,1 -23310=1,2147483647 -23311=1,1
Crop             Slice_39                 1 1 201 206 -23309=1,1 -23310=1,2147483647 -23311=1,2
Concat           Concat_40                4 1 176 186 196 206 207 0=0

可视化:
深度学习目标检测(YoloV5)项目——从0开始到项目落地部署_第1张图片

  • Focus模块的优点:
    Focus的作用无非是使图片在下采样的过程中,不带来信息丢失的情况下,将W、H的信息集中到通道上,再使用3 × 3的卷积对其进行特征提取,使得特征提取得更加的充分。

3 . 替换Focus模块

  • 更改.param文件
    更改前:
Input            images                   0 1 images
Split            splitncnn_input0         1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3
Crop             Slice_4                  1 1 images_splitncnn_3 171 -23309=1,0 -23310=1,2147483647 -23311=1,1
Crop             Slice_9                  1 1 171 176 -23309=1,0 -23310=1,2147483647 -23311=1,2
Crop             Slice_14                 1 1 images_splitncnn_2 181 -23309=1,1 -23310=1,2147483647 -23311=1,1
Crop             Slice_19                 1 1 181 186 -23309=1,0 -23310=1,2147483647 -23311=1,2
Crop             Slice_24                 1 1 images_splitncnn_1 191 -23309=1,0 -23310=1,2147483647 -23311=1,1
Crop             Slice_29                 1 1 191 196 -23309=1,1 -23310=1,2147483647 -23311=1,2
Crop             Slice_34                 1 1 images_splitncnn_0 201 -23309=1,1 -23310=1,2147483647 -23311=1,1
Crop             Slice_39                 1 1 201 206 -23309=1,1 -23310=1,2147483647 -23311=1,2
Concat           Concat_40                4 1 176 186 196 206 207 0=0
Convolution      Conv_41                  1 1 207 208 0=32 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=3456

更改后:

Input            images                   0 1 images
YoloV5Focus      focus                    1 1 images 207
Convolution      Conv_41                  1 1 207 208 0=32 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=3456

4.动态尺寸推理更改

  • 静态尺寸推理:按长边缩放到 640xH 或 Wx640,padding 到 640x640 再检测,如果 H/W 比较小,会在 padding 上浪费大量运算。
  • 动态尺寸推理:按长边缩放到 640xH 或 Wx640,padding 到 640xH2 或 W2x640 再检测,其中 H2/W2 是 H/W 向上取32倍数,计算量少,速度更快。
  • yolov5支持动态尺寸推理, 但这里Reshape 层把输出grid数写死了,不把这三个参数更改成-1的话,则检测的时候会检测不到目标或者检测到满图像都是框。
    更改前:
    深度学习目标检测(YoloV5)项目——从0开始到项目落地部署_第2张图片
    更改后:
    深度学习目标检测(YoloV5)项目——从0开始到项目落地部署_第3张图片
    5.更改部层数,改到跟当前层数一样大小。
    在这里插入图片描述
    6.转成FP16模型
ncnnoptimize yolov5s.param yolov5s.bin yolov5s-opt.param yolov5s-opt.bin 65536

6.yolov5s模型输出
anchor(先验框)的信息在 yolov5/models/yolov5s.yaml文件里,pytorch的后处理在 yolov5/models/yolo.py Detect类 forward函数,要对着改成c++代码。
模型有3个输出blob,分别对应于 stride 8/16/32 的输出。
每个输出shape的格式是WHC:

  • w=n+5,对应于bbox的dx,dy,dw,dh,bbox置信度,n种分类的置信度。
  • h=6400,对应于整个图片里全部anchor的xy,这个1600是stride=8的情况,输入640的图片,宽高划分为640/8=80块,80x80即6400
  • c=3,对应于三种anchor。

7.NCNN推理代码,动态注册了YoloV5Focus层。

#include "YoloV5Detect.h"

class YoloV5Focus : public ncnn::Layer
{
public:
    YoloV5Focus()
    {
        one_blob_only = true;
    }

    virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
    {
        int w = bottom_blob.w;
        int h = bottom_blob.h;
        int channels = bottom_blob.c;

        int outw = w / 2;
        int outh = h / 2;
        int outc = channels * 4;

        top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
        if (top_blob.empty())
            return -100;

#pragma omp parallel for num_threads(opt.num_threads)
        for (int p = 0; p < outc; p++)
        {
            const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
            float* outptr = top_blob.channel(p);

            for (int i = 0; i < outh; i++)
            {
                for (int j = 0; j < outw; j++)
                {
                    *outptr = *ptr;

                    outptr += 1;
                    ptr += 2;
                }

                ptr += w;
            }
        }

        return 0;
    }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)

int initYolov5Net(std::string& param_path, std::string& bin_path, ncnn::Net& yolov5_net,bool use_gpu)
{
	bool has_gpu = false;
	yolov5_net.clear();
	//CPU相关设置(只实现了安卓端)
	/// 0 = all cores enabled(default)
	/// 1 = only little clusters enabled
	/// 2 = only big clusters enabled
	//ncnn::set_cpu_powersave(2);
	//ncnn::set_omp_num_threads(ncnn::get_big_cpu_count());
#if NCNN_VULKAN
	ncnn::create_gpu_instance();
	has_gpu = ncnn::get_gpu_count() > 0;
#endif
	yolov5_net.opt.use_vulkan_compute = (use_gpu && has_gpu);
	yolov5_net.opt.use_bf16_storage = true;

    //动态注册层
    yolov5_net.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);

    //读取模型
    int rp = yolov5_net.load_param(param_path.c_str());
    int rb = yolov5_net.load_model(bin_path.c_str());

    if (rp < 0 || rb < 0)
    {
        return -1;
    }
    return 0;
}

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}

static void generateProposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
    const int num_grid = feat_blob.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h)
    {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    }
    else
    {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = feat_blob.w - 5;

    const int num_anchors = anchors.w / 2;

    for (int q = 0; q < num_anchors; q++)
    {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];

        const ncnn::Mat feat = feat_blob.channel(q);

        for (int i = 0; i < num_grid_y; i++)
        {
            for (int j = 0; j < num_grid_x; j++)
            {
                const float* featptr = feat.row(i * num_grid_x + j);

                // find class index with max class score
                int class_index = 0;
                float class_score = -FLT_MAX;
                for (int k = 0; k < num_class; k++)
                {
                    float score = featptr[5 + k];
                    if (score > class_score)
                    {
                        class_index = k;
                        class_score = score;
                    }
                }

                float box_score = featptr[4];

                float confidence = sigmoid(box_score) * sigmoid(class_score);

                if (confidence >= prob_threshold)
                {
                    // yolov5/models/yolo.py Detect forward
                    // y = x[i].sigmoid()
                    // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                    // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

                    float dx = sigmoid(featptr[0]);
                    float dy = sigmoid(featptr[1]);
                    float dw = sigmoid(featptr[2]);
                    float dh = sigmoid(featptr[3]);

                    float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                    float pb_cy = (dy * 2.f - 0.5f + i) * stride;

                    float pb_w = pow(dw * 2.f, 2) * anchor_w;
                    float pb_h = pow(dh * 2.f, 2) * anchor_h;

                    float x0 = pb_cx - pb_w * 0.5f;
                    float y0 = pb_cy - pb_h * 0.5f;
                    float x1 = pb_cx + pb_w * 0.5f;
                    float y1 = pb_cy + pb_h * 0.5f;

                    Object obj;
                    obj.rect.x = x0;
                    obj.rect.y = y0;
                    obj.rect.width = x1 - x0;
                    obj.rect.height = y1 - y0;
                    obj.label = class_index;
                    obj.prob = confidence;

                    objects.push_back(obj);
                }
            }
        }
    }
}

static inline float intersectionArea(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsortDescentInplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;

        while (faceobjects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);

            i++;
            j--;
        }
    }

#pragma omp parallel sections
    {
#pragma omp section
        {
            if (left < j) qsortDescentInplace(faceobjects, left, j);
        }
#pragma omp section
        {
            if (i < right) qsortDescentInplace(faceobjects, i, right);
        }
    }
}

static void qsortDescentInplace(std::vector<Object>& faceobjects)
{
    if (faceobjects.empty())
        return;

    qsortDescentInplace(faceobjects, 0, faceobjects.size() - 1);
}

static void nmsSortedBboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            // intersection over union
            float inter_area = intersectionArea(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
        {
            picked.push_back(i);
        }
    }
}


int targetDetection(cv::Mat& cv_src, ncnn::Net& yolov5_net, std::vector<Object>& objects, int target_size,
    float prob_threshold, float nms_threshold)
{
    int w = cv_src.cols, h = cv_src.rows;
    float scale = 1.0f;

    if (w > h)
    {
        scale = (float)target_size / (float)w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / (float)h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat ncnn_in = ncnn::Mat::from_pixels_resize(cv_src.data, ncnn::Mat::PIXEL_BGR2RGB, cv_src.cols, cv_src.rows, w, h);

    //边缘扩展检测的尺寸

    //源码在 yolov5/utils/datasets.py letterbox方法
    int wpad = (w + 31) / 32 * 32 - w;
    int hpad = (h + 31) / 32 * 32 - h;

    ncnn::Mat in_pad;

    ncnn::copy_make_border(ncnn_in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    const float norm_vals[3] = { 1 / 255.f, 1 / 255.f, 1 / 255.f };
    in_pad.substract_mean_normalize(0, norm_vals);

    //创建一个提取器
    ncnn::Extractor ex = yolov5_net.create_extractor();

    ex.input("images", in_pad);

    std::vector<Object> proposals;

    //stride 8
    {
        ncnn::Mat out;
        ex.extract("750", out);

        ncnn::Mat anchors(6);
        anchors[0] = 10.f;
        anchors[1] = 13.f;
        anchors[2] = 16.f;
        anchors[3] = 30.f;
        anchors[4] = 33.f;
        anchors[5] = 23.f;

        std::vector<Object> objects8;
        generateProposals(anchors, 8, in_pad, out, prob_threshold, objects8);

        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }

     stride 16
    {
        ncnn::Mat out;
        ex.extract("771", out);

        ncnn::Mat anchors(6);
        anchors[0] = 30.f;
        anchors[1] = 61.f;
        anchors[2] = 62.f;
        anchors[3] = 45.f;
        anchors[4] = 59.f;
        anchors[5] = 119.f;

        std::vector<Object> objects16;
        generateProposals(anchors, 16, in_pad, out, prob_threshold, objects16);

        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }

    // stride 32
    {
        ncnn::Mat out;
        ex.extract("791", out);

        ncnn::Mat anchors(6);
        anchors[0] = 116.f;
        anchors[1] = 90.f;
        anchors[2] = 156.f;
        anchors[3] = 198.f;
        anchors[4] = 373.f;
        anchors[5] = 326.f;

        std::vector<Object> objects32;
        generateProposals(anchors, 32, in_pad, out, prob_threshold, objects32);

        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }

    // sort all proposals by score from highest to lowest
    qsortDescentInplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nmsSortedBboxes(proposals, picked, nms_threshold);

    int count = picked.size();

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;

        // clip
        x0 = std::max(std::min(x0, (float)(cv_src.cols - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(cv_src.rows - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(cv_src.cols - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(cv_src.rows - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }

    return 0;
}

void drawObjects(const cv::Mat& cv_src, const std::vector<Object>& objects,std::vector<std::string> & class_names)
{
  
    cv::Mat cv_detect = cv_src.clone();

    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        std::cout << "Object label:" << obj.label << " Object prod:" << obj.prob
            <<" Object rect" << obj.rect << std::endl;

        cv::rectangle(cv_detect, obj.rect, cv::Scalar(255, 0, 0));

        std::string text = class_names[obj.label] + " " +std::to_string(int(obj.prob * 100)) +"%";

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > cv_detect.cols)
            x = cv_detect.cols - label_size.width;

        cv::rectangle(cv_detect, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
            cv::Scalar(255, 255, 255), -1);

        cv::putText(cv_detect, text, cv::Point(x, y + label_size.height),
            cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
    }

    cv::imshow("image", cv_detect);

}

int main(void)
{
	std::string parma_path = "models/ODIDF16.param";
	std::string bin_parh = "models/ODIDF16.bin";
	ncnn::Net yolov5_net;
	initYolov5Net(parma_path,bin_parh,yolov5_net,true);

	std::vector<std::string> class_names{ "ida", "idb", "idback", "idhead" };

	std::string path = "images";
	std::vector<std::string> filenames;
	cv::glob(path, filenames, false);

	for (auto name : filenames)
	{
		cv::Mat cv_src = cv::imread(name);
		if (cv_src.empty())
		{
			continue;
		}
		std::vector<Object> objects;
		double start = static_cast<double>(cv::getTickCount());
		
		targetDetection(cv_src, yolov5_net, objects);
		double time = ((double)cv::getTickCount() - start) / cv::getTickFrequency();
		std::cout << name <<"Detection time:" << time << "(second) " << std::endl;
		drawObjects(cv_src, objects, class_names);

		cv::waitKey();
	}

	return 0;
}

五、 编译NCNN

1.依赖库:

  • protobuf-3.4.0
    下载地址:https://github.com/google/protobuf/archive/v3.4.0.zip
    打开VS2017或者VS2019本机工具命令,切到源码目录
cd protobuf
mkdir build
cd build
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_MSVC_STATIC_RUNTIME=OFF ../cmake
nmake
nmake install
  • Vulkan
    https://vulkan.lunarg.com/sdk/home
    版本:VulkanSDK-1.2.141.2
    直接点击安装,之后验证是否安装成功,运行C:\VulkanSDK\1.2.141.2\Bin\vkcube.exe,出现下面图像代表安装成功。
    深度学习目标检测(YoloV5)项目——从0开始到项目落地部署_第4张图片

  • glfw
    https://www.glfw.org/
    把glfw-3.3.2.bin.WIN64复制到VulkanSDK\1.2.141.2\Third-Party

  • GLM
    https://github.com/g-truc/glm/
    把GLM复制到VulkanSDK\1.2.141.2\Third-Party

  • 添加系统路径
    在这里插入图片描述
    2.NCNN增加自定义层
    在代码里面注册自定义层时,用ncnn2mem转换模型之后在移动端推理时会报读入模型错误的问题,ncnn2mem之后的模型是以.h方式全部读入到内存,内存方式注册自定义层的时候,要用 TYPEINDEX 枚举,这里可参考ncnn的增加自定义层。之前用的ncnn库都是下载编译好的库,要增加自定义则要git源码进行重新编译。
    2.1 添加自己定义层。

  • git 源码

git clone https://github.com/Tencent/ncnn.git
cd ncnn
git submodule update --init
  • 在ncnn定义源码添加.h文件:src/layer/YoloV5Focus.h
    YoloV5Focus.h
#ifndef LAYER_YOLOOCUS_H
#define LAYER_YOLOOCUS_H

#include "layer.h"
namespace ncnn
{
	class YoloV5Focus :public Layer
	{
	public:
		YoloV5Focus();
		virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const;
	};
}
#endif
  • 在ncnn定义源码添加.cpp文件:src/layer/YoloV5Focus.cpp
    YoloV5Focus.cpp
#include "YoloV5Focus.h"
namespace ncnn
{
	YoloV5Focus::YoloV5Focus()
	{
		one_blob_only = true;
		//support_inplace = true;
	}
	int YoloV5Focus::forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
	{
		int w = bottom_blob.w;
		int h = bottom_blob.h;
		int channels = bottom_blob.c;

		int outw = w / 2;
		int outh = h / 2;
		int outc = channels * 4;

		top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
		if (top_blob.empty())
			return -100;

#pragma omp parallel for num_threads(opt.num_threads)
		for (int p = 0; p < outc; p++)
		{
			const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
			float* outptr = top_blob.channel(p);

			for (int i = 0; i < outh; i++)
			{
				for (int j = 0; j < outw; j++)
				{
					*outptr = *ptr;

					outptr += 1;
					ptr += 2;
				}

				ptr += w;
			}
		}

		return 0;
	}
}
  • 修改 src/CMakeLists.txt 注册 layer/YoloV5Focus
ncnn_add_layer(GroupNorm)
ncnn_add_layer(LayerNorm)
ncnn_add_layer(YoloV5Focus)

深度学习目标检测(YoloV5)项目——从0开始到项目落地部署_第5张图片

  • win下OP的名字是大小写不分的,但在别的系统或者移动端要注意层名称的大小写问题。
  • 编译ncnn
    打开VS2017或者VS2019本机工具命令,切到源码目录
mkdir build
cd build
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -DProtobuf_INCLUDE_DIR=D:/LIB/protobuf/build/install/include -DProtobuf_LIBRARIES=D:/LIB/protobuf/build/install/lib/libprotobuf.lib -DProtobuf_PROTOC_EXECUTABLE=D:/LIB/protobuf/build/install/bin/protoc.exe -DNCNN_VULKAN=ON ..
nmake
nmake install

2.使用添加自己定义层的NCNN库的话,上面的推理代码就可以不用动态注册层的那部分

class YoloV5Focus : public ncnn::Layer
{
public:
    YoloV5Focus()
    {
        one_blob_only = true;
    }

    virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
    {
        int w = bottom_blob.w;
        int h = bottom_blob.h;
        int channels = bottom_blob.c;

        int outw = w / 2;
        int outh = h / 2;
        int outc = channels * 4;

        top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
        if (top_blob.empty())
            return -100;

#pragma omp parallel for num_threads(opt.num_threads)
        for (int p = 0; p < outc; p++)
        {
            const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
            float* outptr = top_blob.channel(p);

            for (int i = 0; i < outh; i++)
            {
                for (int j = 0; j < outw; j++)
                {
                    *outptr = *ptr;

                    outptr += 1;
                    ptr += 2;
                }

                ptr += w;
            }
        }

        return 0;
    }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)
   //动态注册层
yolov5_net.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);

六、NCNN Int8量化模型

1.优化模型

./ncnnoptimize yolov5.param yolov5.bin yolov5-opt.param yolov5-opt.bin 0

2.生成校准表

./ncnn2table yolov5s-opt.param yolov5s-opt.bin imagelist.txt  yolov5s-opt.table mean=[0,0,0] norm=[0.0039215,0.0039215,0.0039215] shape=[416,416,3] pixel=BGR thread=8 method=kl

3.int8量化模型

./ncnn2int8 yolov5s-opt.param yolov5s-opt.bin yolov5s-int8.param yolov5s-int8.bin yolov5s.table

4.int 8量化过的模型在移动端和一些边缘设备上的速度有明显的提升,但精度有少许下降。

你可能感兴趣的:(C++,YOLO,计算机视觉,目标检测,NCNN,GPU加速,YOLOV5,深度学习)