Thread线程知识点讲解

本文出处Thread线程知识点讲解 转载请说明出处

内部属性

//线程名,如果创建时没有指定则使用Thread- + 创建序列号
private volatile String name;
   //线程优先级  Java只是给操作系统一个优先级的参考值,线程最终在操作系统的优先级是多少还是由操作系统决定。
    private int priority;

    //守护线程 
    private boolean daemon = false;

    //为JVM保留字段
    private boolean stillborn = false;
    private long eetop;

    /* What will be run. */
    private Runnable target;

    //线程组,每一个线程必定存于一个线程组中,线程不能独立于线程组外
    private ThreadGroup group;

    // 类加载器,当线程需要加载类时,会使用内部类加器
    private ClassLoader contextClassLoader;

    /* For autonumbering anonymous threads. */
    private static int threadInitNumber;
    private static synchronized int nextThreadNum() {
        return threadInitNumber++;
    }

    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

    /*
     * InheritableThreadLocal values pertaining to this thread. This map is
     * maintained by the InheritableThreadLocal class.
     */
    ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;

    /*
     * The requested stack size for this thread, or 0 if the creator did
     * not specify a stack size.  It is up to the VM to do whatever it
     * likes with this number; some VMs will ignore it.
     */
    private final long stackSize;

    /*
     * JVM-private state that persists after native thread termination.
     */
    private long nativeParkEventPointer;

    /*
     * Thread ID
     */
    private final long tid;

    /* For generating thread ID */
    private static long threadSeqNumber;

    // 这个线程号是整个Thread 类共享的
    private static synchronized long nextThreadID() {
        return ++threadSeqNumber;
    }

    /*
     * 线程状态
     */
    private volatile int threadStatus;

构造函数

    public Thread() {
        this(null, null, "Thread-" + nextThreadNum(), 0);
    }

    public Thread(ThreadGroup group, Runnable target, String name,
                  long stackSize) {
        this(group, target, name, stackSize, null, true);
    }

    private Thread(ThreadGroup g, Runnable target, String name,
                   long stackSize, AccessControlContext acc,
                   boolean inheritThreadLocals) {
        if (name == null) {
            throw new NullPointerException("name cannot be null");
        }

        this.name = name;

        Thread parent = currentThread(); //从创建Thread 的线程中获取到父线程
        SecurityManager security = System.getSecurityManager();
        if (g == null) {
            /* Determine if it's an applet or not */

            /* If there is a security manager, ask the security manager
               what to do. */
            if (security != null) {
                g = security.getThreadGroup();
            }

            /* If the security manager doesn't have a strong opinion
               on the matter, use the parent thread group. */
            if (g == null) { //没有设置线程组则使用当前线程的线程组
                g = parent.getThreadGroup();
            }
        }

        /* checkAccess regardless of whether or not threadgroup is
           explicitly passed in. */
        g.checkAccess();

        /*
         * Do we have the required permissions?
         */
        if (security != null) {
            if (isCCLOverridden(getClass())) {
                security.checkPermission(
                        SecurityConstants.SUBCLASS_IMPLEMENTATION_PERMISSION);
            }
        }
        //对没有启动线程进行计数
        g.addUnstarted();

        this.group = g;
        //如果在创建线程时没有设置守护线程,优先级、类加器这些,全部都是当前现场的
        this.daemon = parent.isDaemon();
        this.priority = parent.getPriority();
        if (security == null || isCCLOverridden(parent.getClass()))
            this.contextClassLoader = parent.getContextClassLoader();
        else
            this.contextClassLoader = parent.contextClassLoader;
        this.inheritedAccessControlContext =
                acc != null ? acc : AccessController.getContext();
        this.target = target;
        setPriority(priority);
        if (inheritThreadLocals && parent.inheritableThreadLocals != null)
            this.inheritableThreadLocals =
                ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
        /* Stash the specified stack size in case the VM cares */
        this.stackSize = stackSize;

        /* Set thread ID */
        this.tid = nextThreadID();
    }

构造方法其实都是对Thread 内部属性进行初始化,比如线程名、优先级、类加器、线程Id。如果没有设置这些属性全部继承自当前的。让我比较奇怪是非常重要的threadStatus 没有赋值,而是使用了默认值,我猜想这个变量全程都是由c++来变更的,所以不必要使用Java进行赋值。
已经初始化的线程对象可以通过set方法去修改守护线程、线程名、优先级。

线程状态

 public enum State {
        /**
         * Thread state for a thread which has not yet started.
         */
        NEW,

        /**
         * Thread state for a runnable thread.  A thread in the runnable
         * state is executing in the Java virtual machine but it may
         * be waiting for other resources from the operating system
         * such as processor.
         */
        RUNNABLE,

        /**
         * Thread state for a thread blocked waiting for a monitor lock.
         * A thread in the blocked state is waiting for a monitor lock
         * to enter a synchronized block/method or
         * reenter a synchronized block/method after calling
         * {@link Object#wait() Object.wait}.
         */
        BLOCKED,

        /**
         * Thread state for a waiting thread.
         * A thread is in the waiting state due to calling one of the
         * following methods:
         * 
    *
  • {@link Object#wait() Object.wait} with no timeout
  • *
  • {@link #join() Thread.join} with no timeout
  • *
  • {@link LockSupport#park() LockSupport.park}
  • *
* *

A thread in the waiting state is waiting for another thread to * perform a particular action. * * For example, a thread that has called {@code Object.wait()} * on an object is waiting for another thread to call * {@code Object.notify()} or {@code Object.notifyAll()} on * that object. A thread that has called {@code Thread.join()} * is waiting for a specified thread to terminate. */ WAITING, /** * Thread state for a waiting thread with a specified waiting time. * A thread is in the timed waiting state due to calling one of * the following methods with a specified positive waiting time: *

    *
  • {@link #sleep Thread.sleep}
  • *
  • {@link Object#wait(long) Object.wait} with timeout
  • *
  • {@link #join(long) Thread.join} with timeout
  • *
  • {@link LockSupport#parkNanos LockSupport.parkNanos}
  • *
  • {@link LockSupport#parkUntil LockSupport.parkUntil}
  • *
*/ TIMED_WAITING, /** * Thread state for a terminated thread. * The thread has completed execution. */ TERMINATED; }

线程状态经常被问于面试中,几个状态和代表涵义大家都有记一记。

状态 描述 场景
NEW Thread线程刚刚被创建,创建状态 new Thread
RUNNABLE 运行状态,线程正在运行中 Thread.start
BLOCKED 堵塞状态 synchronized 竞争失败
WAITING 等待,这种状态要么无限等待下去,要么被唤醒 Object.wait、Lock
TIMED_WAITING 等待超时,在等待时设置了时间,到时会自动唤醒 Thread.sleep、LockSupport.parkNanos
TERMINATED 死亡状态 线程已经执行完任务

从下图可以发现从创建-> 运行-> 死亡 这个过程是不可逆的。
Thread线程知识点讲解_第1张图片

线程运行和停止

    public synchronized void start() {
        /**
         * This method is not invoked for the main method thread or "system"
         * group threads created/set up by the VM. Any new functionality added
         * to this method in the future may have to also be added to the VM.
         *
         * A zero status value corresponds to state "NEW".
         */
        if (threadStatus != 0)  //状态必须是创建状态  NEW  ,防止一个对象多次调用start 方法
            throw new IllegalThreadStateException();

        /* Notify the group that this thread is about to be started
         * so that it can be added to the group's list of threads
         * and the group's unstarted count can be decremented. */
        group.add(this);  //加入线程组容器中,未开始线程数-1  

        boolean started = false;
        try {
            start0();  
            started = true;
        } finally {
            try {
                 // 进入到这里,则start0 创建一个线程失败了,要从线程组中删除它,未开始线程再加回来
                if (!started) {  
                    group.threadStartFailed(this);
                }
            } catch (Throwable ignore) {
                /* do nothing. If start0 threw a Throwable then
                  it will be passed up the call stack */
            }
        }
    }

    private native void start0();

start方法比较简单的,先判断状态是否正确,在创建之前加入到线程组里面,失败了再移除。start0 方法应该就是调用系统资源真正去创建一个线程了,而且线程状态也是由这个方法修改的。

run方法只有使用Thread来创建线程,并且使用Runnable传参才会执行这里run方法,继承方式应该是直接调用子类run方法了。

    public void run() {
        if (target != null) {  //有传入Runnable 对象,则调用该对象实现run方法
            target.run();
        }
    }

stop方法虽然在Java2已经被官方停用了,很值得去了解下的。

    @Deprecated(since="1.2")
    public final void stop() {
        SecurityManager security = System.getSecurityManager();
        if (security != null) {
            checkAccess();
            if (this != Thread.currentThread()) {
                security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
            }
        }
        // A zero status value corresponds to "NEW", it can't change to
        // not-NEW because we hold the lock.
        if (threadStatus != 0) { //不是NEW,线程已经运行了,如果被挂起了,需要对它进行唤醒
            resume(); // Wake up thread if it was suspended; no-op otherwise
        }

        // The VM can handle all thread states
        stop0(new ThreadDeath()); //停止线程,并且抛出一个异常给JVM
    }

    private native void stop0(Object o);

看完这个方法,也没有看出来stop()能干什么,我也不是很清楚这个stop能干什么,我将写几个例子验证功能。
创建几个线程去执行下任务,执行一会后,对所有线程调用stop方法,是否会退出任务。

public class ThreadStopTest {

    public static void main(String[] args) {
        ThreadStopTest t = new ThreadStopTest();
        Runnable r = () -> {
          int i = 0;
          while (i < 1000){
              t.spinMills(500);
              System.out.println(Thread.currentThread().getName() + " : " + i);
              i++;
          }
        };

        Thread t1 = new Thread(r);
        Thread t2 = new Thread(r);
        Thread t3 = new Thread(r);
        t1.start();
        t2.start();
        t3.start();
        t.spinMills(2000);
        t1.stop();
        t2.stop();
        t3.stop();
    }

    public void spinMills(long millisecond){
       long start = System.currentTimeMillis();
       while (System.currentTimeMillis() - start < millisecond){
           //自旋 ,模拟执行任务
       }
    }
}

执行结果

Thread-1 : 0
Thread-0 : 0
Thread-2 : 0
Thread-1 : 1
Thread-0 : 1
Thread-2 : 1
Thread-2 : 2
Thread-1 : 2
Thread-0 : 2

调用完stop方法,线程立刻退出任务,连一个异常都没有抛出的,真的是非常干脆。如果有人不下心使用stop方法,出现问题都非常难排除,所以Java 官方早早就停止使用它了,详细看官方说明

如果想优雅停止一个正在运行的线程,官方建议使用interrupted()。线程中断就是目标线程发送一个中断信号,能够收到中断信号线程自己实现退出逻辑。简单点说就是线程A在干活,突然有个人对它做了一个动作,线程A在知道这个动作涵义,它会知道自己要停下来。说白这就一个动作,如果线程逻辑没有处理这个动作代码,线程并不会退出的。看下Thread类里面有那些方法。

方法 备注
interrupt() 中断目标线程,给目标线程发一个中断信号,线程被打上中断标记
isInterrupted() 判断目标线程是否被中断,不会清除中断标记
interrupted 判断目标线程是否被中断,会清除中断标记

实现一个简单例子

    public static void main(String[] args) throws InterruptedException {
        Runnable r = () -> {
            while (!Thread.currentThread().isInterrupted()){
                //do some
                System.out.println(System.currentTimeMillis());
            }
            System.out.println("线程准备退出啦");
            Thread.interrupted();
        };
        Thread t = new Thread(r);
        t.start();
        Thread.sleep(1000);
        t.interrupt();
    }

上面代码核心是中断状态,如果中断被清除了,那程序不会跳出while循环的,下面改一下,添加一个sleep方法

    public static void main(String[] args) throws InterruptedException {
        Runnable r = () -> {
            while (!Thread.currentThread().isInterrupted()){
                //do some
                try {
                    Thread.sleep(400);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(System.currentTimeMillis());
            }
            System.out.println("线程准备退出啦");
            Thread.interrupted();
        };
        Thread t = new Thread(r);
        t.start();
        Thread.sleep(1000);
        t.interrupt();
    }

执行结果 : 发送中断后,Thread.sleep直接抛出一个异常,并不会跳出循环。
因为sleep会响应中断,抛出一个中断异常,再清除线程中断状态。再回到while 判断时,中断状态已经被清除了,继续循环下去。
sleep()是一个静态native 方法,使当前执行的线程休眠指定时间,但是休眠的线程不会放弃监控器的锁(synchronized),当任何线程要中断当前线程时,会抛出InterruptedException异常,并且清理当前线程的中断状态。所以在方法调用上就会抛出这个异常,让调用者去处理中断异常。

join和yield方法

join()就是一个等待方法,等待当前线程任务执行后,再次唤醒被调用的线程,常常用来控制多线程任务执行顺序。

    /**
     * Waits at most {@code millis} milliseconds for this thread to
     * die. A timeout of {@code 0} means to wait forever.
     *
     * 

This implementation uses a loop of {@code this.wait} calls * conditioned on {@code this.isAlive}. As a thread terminates the * {@code this.notifyAll} method is invoked. It is recommended that * applications not use {@code wait}, {@code notify}, or * {@code notifyAll} on {@code Thread} instances. * * @param millis * the time to wait in milliseconds * * @throws IllegalArgumentException * if the value of {@code millis} is negative * * @throws InterruptedException * if any thread has interrupted the current thread. The * interrupted status of the current thread is * cleared when this exception is thrown. */ public final synchronized void join(final long millis) throws InterruptedException { if (millis > 0) { if (isAlive()) { //这里获取线程状态,只是不是开始和死亡就算alive了 final long startTime = System.nanoTime(); long delay = millis; do { wait(delay); } while (isAlive() && (delay = millis - TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTime)) > 0); //在指定时间内沉睡 } } else if (millis == 0) { while (isAlive()) { wait(0); } } else { throw new IllegalArgumentException("timeout value is negative"); } }

想了解方法主要看方法注释就行,在指定时间内等待被调用者的线程死亡,如果没有死亡时间到了会自行唤醒,如果时间为0则永远等待下去,直到执行线程执行完任务。唤醒是由notifyAll执行的,但是没看见在哪里执行这个方法。查了一下资料知道每个线程执行完成后都会调用exit()方法,在exit会调用notifyAll。
yield(): 单词翻译过来就是让步的意思。主要作用当线程获取到执行权时,调用这个方法会主动让出执行器,它跟上面wait、sleep 不同,线程状态是没有改变的,此时任然是RUN。比如一个线程获取锁失败了,这时线程什么不能干,获取锁本身是很快,此时将线程挂起了,有点得不偿失,不如此时让出CPU执行器,让其他线程去执行。既不会浪费CPU宝贵时间,也不需要太耗费性能。这个方法经常用于java.util.concurrent.locks包下同步方法,看过并发工具类的同学应该都认识它。

线程间协作

wait方法让当前线程进入等待状态(WAITING),并且释放监控锁,只有当其他线程调用notify或者notifyAll才会唤醒线程。
notify唤醒一个在等待状态的线程,重新进入RUNNABLE状态。
notifyAll唤醒所有正在等待状态的线程,重新进入RUNNABLE状态。
上面三个方法都必须在监控锁(synchronized)下使用,不然会抛出IllegalMonitorStateException。
wait、notify 两个方法结合就可以实现线程之间协作。比如最经典的生产者-消费者模型: 当上游消费者发送发送信息太多,导致队列挤压已经满了,这时消费者这边可以使用wait,让生产者停下里,当消费者已经开始消费了,此时队列已经被消费走一个信息了,有空间了,消费者可以调用notify,让上游生产者继续运作起来。当队列里面信息已经被消费完时,消费者会调用wait,让线程进入等待中,当上游线程有信息发送到队列时,此时队列中信息就不是全空的了,就可以调用wait 唤醒一个等待消费者。这样就可以形成线程之间相互通信的效果了。
简单实现消费者-生产者模型

    public void push(T t){
        synchronized (lock){
            size++;
            if (size == QUEUE_CAPACTIY) {
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            lock.notify();
            //入队列中
        }
    }

    public T poll(){
        synchronized (lock){
            size--;
            if (size == 0) {
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            lock.notify();
            return T;
        }
    }

Callable和 Thread关系

我们知道了所有的线程其实都是Thread.start去创建的,重写run 方法达到异常执行任务,但是Callable这个接口是否也是使用Thread或者Runnable接口,主要看FutureTask就知道如何实现了。
看下run方法

    public void run() {
           //如果线程已经被创建了,则不需要再次执行任务了
        if (state != NEW ||
            !RUNNER.compareAndSet(this, null, Thread.currentThread()))  
            return;
        try {
            Callable c = callable;  //callable 方法实现类
            if (c != null && state == NEW) { //刚刚初始化的状态
                V result;
                boolean ran;
                try {
                    result = c.call(); //执行任务
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex); //保存异常,将等待队列的线程全部唤醒过来
                }
                if (ran)
                    set(result); //保存执行结果,将等待队列的线程全部唤醒过来
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

可以看出Callable仍然是使用Thread来创建线程的,内部通过维护state来判断任务状态,在run 方法中执行call方法,保存异常和执行结果。
看下get() 如何获取执行结果的吧

    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)  //还在执行中
            s = awaitDone(false, 0L);  //等待任务执行完成或者中断,会堵塞调用线程
        return report(s);
    }

   /**
     * Awaits completion or aborts on interrupt or timeout.
     *
     * @param timed true if use timed waits
     * @param nanos time to wait, if timed
     * @return state upon completion or at timeout
     */
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        // The code below is very delicate, to achieve these goals:
        // - call nanoTime exactly once for each call to park
        // - if nanos <= 0L, return promptly without allocation or nanoTime
        // - if nanos == Long.MIN_VALUE, don't underflow
        // - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
        //   and we suffer a spurious wakeup, we will do no worse than
        //   to park-spin for a while
        long startTime = 0L;    // Special value 0L means not yet parked
        WaitNode q = null;
        boolean queued = false;
        for (;;) { 
            int s = state;
            if (s > COMPLETING) { //如果状态已经有执行中变成其他 ,直接将状态返回
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) //正在执行中,让出CPU执行权,而不是变换线程状态
                // We may have already promised (via isDone) that we are done
                // so never return empty-handed or throw InterruptedException
                Thread.yield();
            else if (Thread.interrupted()) { //处理线程中断,退出自旋
                removeWaiter(q);  //删除队列中的线程
                throw new InterruptedException();
            }
            else if (q == null) {
                if (timed && nanos <= 0L)
                    return s;
                q = new WaitNode();
            }
            else if (!queued)  //将等待结果线程放入一个队列中,其实这个队列就是来处理等待结果线程的中断的
                queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
            else if (timed) {
                final long parkNanos;
                if (startTime == 0L) { // first time
                    startTime = System.nanoTime();
                    if (startTime == 0L)
                        startTime = 1L;
                    parkNanos = nanos;
                } else {
                    long elapsed = System.nanoTime() - startTime;
                    if (elapsed >= nanos) {
                        removeWaiter(q);
                        return state;
                    }
                    parkNanos = nanos - elapsed;
                }
                // nanoTime may be slow; recheck before parking
                if (state < COMPLETING) //任务没有启动,挂起等待线程
                    LockSupport.parkNanos(this, parkNanos);
            }
            else
                LockSupport.park(this); //任务没有开始,挂起调用者,任务完成后会将它唤醒的
        }
    }

现在基本就明了,使用run 调用call方法,将执行结果保存起来,然后get 方法这边使用自旋方法等待执行结果,并且使用队列将等待的线程保存起来,来处理线程的唤醒、中断。

总结

这里简单说了Thread的构造方法,属性设置,比较重要就是线程几个状态,状态流转、线程启动停止,中断处理,几个常用方法的介绍。简单说了下FutureTask实现原理,结合上面提到的知识点,上面提到这些知识都是挺重要的,你可以看到大部分Java并发类都用到这些知识来开发的,频繁出现在面试中也是可以理解的。

你可能感兴趣的:(java多线程)