在《OpenCV-Python图像的加法运算cv2.add函数详解》详细介绍了图像的加法运算,有加法就有减法,本文介绍图像的减法运算。
图像的减法通常用于查找图像的差异,如医学上血管的影像和造影后的血管影像比对就可以看出血液流动的情况,当然减法也可以用在图像的特殊处理上。
subtract(src1, src2, dst=None, mask=None, dtype=None)
减法的参数与加法类似:
dst(I)=saturate(src1(I)−src2(I))if mask(I)≠0
dst(I)=saturate(src1(I)−src2)if mask(I)≠0
dst(I)=saturate(src1−src2(I))if mask(I)≠0
dst(I)=saturate(src2−src1(I))if mask(I)≠0
以上运算过程理解存在疑问的,请参考《opencv图像处理学习随笔:帮助文档运算公式中saturate的含义》。
下面的两张图,后者是前者基础上增加了两处文字和一处曲线:
import numpy as np
import cv2
def main():
img1 = cv2.imread(r'F:\pic\seaside.jpg')
img2 = cv2.imread(r'F:\pic\seaside_new.jpg')
diffImg1 = cv2.subtract(img1,img2)
diffImg2 = cv2.subtract(img2, img1)
diffImg3 = img1 - img2
diffImg4 = img2 - img1
cv2.imshow('subtract(img1,img2)',diffImg1)
cv2.imshow('subtract(img2,img1)', diffImg2)
cv2.imshow('img1 - img2',diffImg3)
cv2.imshow('img2 - img1', diffImg4)
cv2.waitKey(0)
main()
可以看到opencv的减法和矩阵减法在处理差异时opencv的结果更自然平滑。这种情况在两个图表面看起来差不多但实际有比较大的差别时更明显。
上面的案例第一张图是使用windows画图另存之后保存的,第二张图是在前面保存图的基础上增加了内容,如果第一张图直接用原图不另存,其内容与另存的还是有比较大的差异,两个文件的大小都不同。下面的seaside2.jpg是没有使用画图工具另存的真正原图,seaside.jpg是使用画图工具另存的原图,二者图像的分辨率一样。
def main():
img1 = cv2.imread(r'F:\pic\seaside2.jpg')
img2 = cv2.imread(r'F:\pic\seaside_new.jpg')
print(img1.shape,img2.shape)
diffImg1 = cv2.subtract(img1,img2)
diffImg2 = cv2.subtract(img2, img1)
diffImg3 = img1 - img2
diffImg4 = img2 - img1
cv2.imshow('subtract(img1,img2)',diffImg1)
cv2.imshow('subtract(img2,img1)', diffImg2)
cv2.imshow('img1 - img2', diffImg3)
cv2.imshow('img2 - img1',diffImg4)
cv2.waitKey(0)
main()
则各处理结果图像如下:
可以看到,对这种图像处理时,OpenCV处理比矩阵减法要好很多。
仔细分析了一下相关数据,发现另存之后的图像大部分像素数据在BGR三个分量上出现了很小的变化,可能每个通道就1-2个数值的差异,有的通道增加了一点,有得减少了一点,opencv是饱和运算,小于0时被置为了0,但矩阵运算出现负数时由于类型是uint8,负数变成了256加该负数的值,导致差异很大。
本文详细介绍了opencv图像减法的作用、具体语法以及四种使用场景,并举例介绍了opencv图像减法和矩阵减法的差别,可以看到,OpenCV的减法函数在图像处理上比矩阵减法更自然和平滑。
更多OpenCV-Python的介绍请参考专栏《OpenCV-Python图形图像处理 》
博文地址:https://blog.csdn.net/laoyuanpython/category_9979286.html
老猿的付费专栏《使用PyQt开发图形界面Python应用 》(https://blog.csdn.net/laoyuanpython/category_9607725.html)专门介绍基于Python的PyQt图形界面开发基础教程,付费专栏《moviepy音视频开发专栏》 (https://blog.csdn.net/laoyuanpython/category_10232926.html)详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,两个专栏都适合有一定Python基础但无相关知识的小白读者学习。
付费专栏文章目录:《moviepy音视频开发专栏文章目录》(https://blog.csdn.net/LaoYuanPython/article/details/107574583)、《使用PyQt开发图形界面Python应用专栏目录 》(https://blog.csdn.net/LaoYuanPython/article/details/107580932)。
对于缺乏Python基础的同仁,可以通过老猿的免费专栏《专栏:Python基础教程目录》(https://blog.csdn.net/laoyuanpython/category_9831699.html)从零开始学习Python。
如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。