Flink Checkpoint机制剖析(源码剖析)

Checkpoint整体设计

Checkpoint执行过程分为:启动、执行以及确认完成三个阶段。

  1. CheckpointCoordinator控制Checkpoint执行:JM端的CheckpointCoordinator组件会周期性的向数据源发送执行CK的请求,数据源节点将数据源消费的offset发送给JM,存储到CK的元数据信息中。同时向下广播barrier。
  2. 中间算子对齐barrier:中间算子在StreamTaskNetworkInput组件中读取数据并对齐各个channel的barrier。barrier对齐后,触发StreamTask的CK操作。将状态数据快照存储到外部持久化介质中,并向JM发送ack响应(会携带该task的状态信息)。
  3. CK完成后向Task发送通知:当JM接收到所有sink节点的ack消息后,JM确认本次CK操作完成(JM将CK元数据和算子状态序列化到远程持久化存储或内存之后),向所有Task实例发送本次CK完成的消息。

在执行Checkpoint的过程中,JM会对job中所有的快照进行统一协调和管理。在创建ExecutionGrap时会创建对应的组件。
在ExecutionGrap创建过程中会生成CompletedCheckpointStore、CheckpointStatsTracker 、CheckpointCoordinator组件用于监控和管理Job中的CK操作。

public class ExecutionGraphBuilder {
	public static ExecutionGraph buildGraph(
		@Nullable ExecutionGraph prior,
		JobGraph jobGraph,
		Configuration jobManagerConfig,
		ScheduledExecutorService futureExecutor,
		Executor ioExecutor,
		SlotProvider slotProvider,
		ClassLoader classLoader,
		CheckpointRecoveryFactory recoveryFactory,
		Time rpcTimeout,
		RestartStrategy restartStrategy,
		MetricGroup metrics,
		BlobWriter blobWriter,
		Time allocationTimeout,
		Logger log,
		ShuffleMaster<?> shuffleMaster,
		JobMasterPartitionTracker partitionTracker,
		FailoverStrategy.Factory failoverStrategyFactory) throws JobExecutionException, JobException {
		//。。。
		JobCheckpointingSettings snapshotSettings = jobGraph.getCheckpointingSettings();
		if (snapshotSettings != null) {
			//获取source节点,这些节点通过CheckpointCoordinator主动触发CK
			List<ExecutionJobVertex> triggerVertices =
					idToVertex(snapshotSettings.getVerticesToTrigger(), executionGraph);
			//ackVertices、confirmVertices存储了StreamGrap的全部节点,所有节点都需要返回Ack确认信息并确认CK执行成功。
			List<ExecutionJobVertex> ackVertices =
					idToVertex(snapshotSettings.getVerticesToAcknowledge(), executionGraph);

			List<ExecutionJobVertex> confirmVertices =
					idToVertex(snapshotSettings.getVerticesToConfirm(), executionGraph);
			//存储CK的元数据信息
			CompletedCheckpointStore completedCheckpoints;
			//通过counter保证只存储固定数量的CompletedCheckpoint
			CheckpointIDCounter checkpointIdCounter;
			//。。。
			//用于监控和追踪CK执行和更新的情况,WebUI显示的CK数据主要就来自于该tracker
			CheckpointStatsTracker checkpointStatsTracker = new CheckpointStatsTracker(
					historySize,
					ackVertices,
					snapshotSettings.getCheckpointCoordinatorConfiguration(),
					metrics);
			//。。。
			//在作业执行调度中开启CK,期间会创建CheckpointCoordinator组件
			executionGraph.enableCheckpointing(
				chkConfig,
				triggerVertices,
				ackVertices,
				confirmVertices,
				hooks,
				checkpointIdCounter,
				completedCheckpoints,
				rootBackend,
				checkpointStatsTracker);
		}
	}
}
	public void enableCheckpointing(
			CheckpointCoordinatorConfiguration chkConfig,
			List<ExecutionJobVertex> verticesToTrigger,
			List<ExecutionJobVertex> verticesToWaitFor,
			List<ExecutionJobVertex> verticesToCommitTo,
			List<MasterTriggerRestoreHook<?>> masterHooks,
			CheckpointIDCounter checkpointIDCounter,
			CompletedCheckpointStore checkpointStore,
			StateBackend checkpointStateBackend,
			CheckpointStatsTracker statsTracker) {
			//。。。

			//timer定时器用于CheckpointCoordinator定时触发Source节点的CK操作
			checkpointCoordinatorTimer = Executors.newSingleThreadScheduledExecutor(
			new DispatcherThreadFactory(
				Thread.currentThread().getThreadGroup(), "Checkpoint Timer"));

		// CK协调器,用于创建和保持检查点状态等功能,协调和管理Job中的Checkpoint
		checkpointCoordinator = new CheckpointCoordinator(
			jobInformation.getJobId(),
			chkConfig,
			tasksToTrigger,
			tasksToWaitFor,
			tasksToCommitTo,
			checkpointIDCounter,
			checkpointStore,
			checkpointStateBackend,
			ioExecutor,
			new ScheduledExecutorServiceAdapter(checkpointCoordinatorTimer),
			SharedStateRegistry.DEFAULT_FACTORY,
			failureManager);
	}
	//注册JobStatusListener监听器,当JobStatus变为running时,通过监听器启动CheckpointCoordinator
	if (chkConfig.getCheckpointInterval() != Long.MAX_VALUE) {
			registerJobStatusListener(checkpointCoordinator.createActivatorDeactivator());
		}

Checkpoint触发过程

CK的触发过程有两种方式:一种时source算子通过CheckpointCoordinator组件进行协调和控制,CheckpointCoordinator通过定时器的方式定时触发source算子节点的CK操作。另一种是下游算子节点根据上游算子节点发送的barrier事件控制CK的触发时机。

CheckpointCoordinator触发算子Checkpoint操作

CheckpointCoordinator负责Source算子节点CK操作以及整个作业的CK管理,并且CheckpointCoordinator组件会接收TaskManager在CK执行完成之后返回的Ack信息。

CheckpointCoordinator用过监听器启动,当JobStatus变为RUNNING状态时启动CheckpointCoordinator。

public class CheckpointCoordinatorDeActivator implements JobStatusListener {
	@Override
	public void jobStatusChanges(JobID jobId, JobStatus newJobStatus, long timestamp, Throwable error) {
		if (newJobStatus == JobStatus.RUNNING) {
			// 启动CK调度程序
			coordinator.startCheckpointScheduler();
		} else {
			// 停止CK调度
			coordinator.stopCheckpointScheduler();
		}
	}
}

CheckpointCoordinator通过定时器周期性的触发ScheduledTrigger线程

public class CheckpointCoordinator {
	private final ScheduledExecutor timer;
	//通过timer定时器周期性触发ScheduledTrigger线程
	private ScheduledFuture<?> scheduleTriggerWithDelay(long initDelay) {
		return timer.scheduleAtFixedRate(
			new ScheduledTrigger(),
			initDelay, baseInterval, TimeUnit.MILLISECONDS);
	}

	private final class ScheduledTrigger implements Runnable {
		@Override
		public void run() {
			try {
				//调用triggerCheckpoint方法触发CK操作
				triggerCheckpoint(System.currentTimeMillis(), true);
			}
			catch (Exception e) {
				LOG.error("Exception while triggering checkpoint for job {}.", job, e);
			}
		}
	}
}

CheckpointCoordinator.triggerCheckpoint()方法的逻辑比较多,主要包括以下步骤:

  1. CK操作前的检查操作:
    检查CK的执行环节和参数、构建CK操作对应Task节点实例的Execution集合、构建需要发送Ack消息的ExecutionVertex集合。
  2. 创建PendingCheckpoint
    从开始执行CK操作直到所有Task实例返回Ack确认成功消息,CK会一直处于Pending状态,确保Ck能被成功执行。PendingCheckpoint存储了ID、ackTasks、快照存储位置等信息
		//定义CK过程中状态快照数据存放位置
		final CheckpointStorageLocation checkpointStorageLocation;
		final long checkpointID;

		try {
			// CK的唯一标记,HA集群会通过Zookeeper实现checkpointID计数
			checkpointID = checkpointIdCounter.getAndIncrement();

			checkpointStorageLocation = props.isSavepoint() ?
					checkpointStorage.initializeLocationForSavepoint(checkpointID, externalSavepointLocation) :
					checkpointStorage.initializeLocationForCheckpoint(checkpointID);
		}
		catch (Throwable t) {
			int numUnsuccessful = numUnsuccessfulCheckpointsTriggers.incrementAndGet();
			LOG.warn("Failed to trigger checkpoint for job {} ({} consecutive failed attempts so far).",
					job,
					numUnsuccessful,
					t);
			throw new CheckpointException(CheckpointFailureReason.EXCEPTION, t);
		}

		final PendingCheckpoint checkpoint = new PendingCheckpoint(
			job,
			checkpointID,
			timestamp,
			ackTasks,
			masterHooks.keySet(),
			props,
			checkpointStorageLocation,
			executor);
  1. CK操作的触发和完成
    会遍历所有Source算子的Execution节点,触发节点所在TaskExecutor的CK操作。
		Execution[] executions = new Execution[tasksToTrigger.length];
		
		//。。。
		//触发所有Source算子的CK操作
		for (Execution execution: executions) {
			if (props.isSynchronous()) {
				execution.triggerSynchronousSavepoint(checkpointID, timestamp, checkpointOptions, advanceToEndOfTime);
			} else {
				execution.triggerCheckpoint(checkpointID, timestamp, checkpointOptions);
			}
		}
		//返回CK中的CompletionFuture对象
		numUnsuccessfulCheckpointsTriggers.set(0);
		return checkpoint.getCompletionFuture();

之后的会通过Execution的LogicalSlot拿到对于的TaskManagerGateway,然后通过TaskManagerGateway调用TaskExecutor.triggerCheckpoint()。
再从TaskExecutor的taskSlotTable中拿到对于的Task线程,最后调用StreamTask.triggerCheckpointAsync()方法执行CK操作。

通过ExecutionSlot资源获取到TaskManger对应的网关,通过RPC调用触发对应Task的CK操作
public class Execution implements AccessExecution, Archiveable<ArchivedExecution>, LogicalSlot.Payload {
	private void triggerCheckpointHelper(long checkpointId, long timestamp, CheckpointOptions checkpointOptions, boolean advanceToEndOfEventTime) {

		final CheckpointType checkpointType = checkpointOptions.getCheckpointType();
		if (advanceToEndOfEventTime && !(checkpointType.isSynchronous() && checkpointType.isSavepoint())) {
			throw new IllegalArgumentException("Only synchronous savepoints are allowed to advance the watermark to MAX.");
		}
		//获取当前Execution分配的LogicalSlot资源
		final LogicalSlot slot = assignedResource;

		if (slot != null) {
			//通过LogicalSlot获取到TaskManager对应的网关
			final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
			//RPC调用TaskManager触发对应Task的CK操作
			taskManagerGateway.triggerCheckpoint(attemptId, getVertex().getJobId(), checkpointId, timestamp, checkpointOptions, advanceToEndOfEventTime);
		} else {
			LOG.debug("The execution has no slot assigned. This indicates that the execution is no longer running.");
		}
	}
}
StreamTask触发CK操作:
public abstract class StreamTask<OUT, OP extends StreamOperator<OUT>>
		extends AbstractInvokable
		implements AsyncExceptionHandler {
	@Override
	public Future<Boolean> triggerCheckpointAsync(
			CheckpointMetaData checkpointMetaData,
			CheckpointOptions checkpointOptions,
			boolean advanceToEndOfEventTime) {
		//将CK操作封装为Mail,发送到StreamTask的MailBox中进行调度
		return mailboxProcessor.getMainMailboxExecutor().submit(
				() -> triggerCheckpoint(checkpointMetaData, checkpointOptions, advanceToEndOfEventTime),
				"checkpoint %s with %s",
			checkpointMetaData,
			checkpointOptions);
	}

对齐Barrier触发CK操作

StreamTask的Barrier对齐是通过CheckpointInputGate(封装的InputGate,具有barrier对齐功能)读取网络数据时触发的,这里过具体流程我们在上一节StreamTask数据流中已经介绍过了。
当所有channel的barrier对齐之后就会触发StreamTask.performCheckpoint()方法,生成当前Task的快照。

	private boolean performCheckpoint(
			CheckpointMetaData checkpointMetaData,
			CheckpointOptions checkpointOptions,
			CheckpointMetrics checkpointMetrics,
			boolean advanceToEndOfTime) throws Exception {

		LOG.debug("Starting checkpoint ({}) {} on task {}",
			checkpointMetaData.getCheckpointId(), checkpointOptions.getCheckpointType(), getName());

		final long checkpointId = checkpointMetaData.getCheckpointId();

		if (isRunning) {
			actionExecutor.runThrowing(() -> {

				if (checkpointOptions.getCheckpointType().isSynchronous()) {
					setSynchronousSavepointId(checkpointId);

					if (advanceToEndOfTime) {
						advanceToEndOfEventTime();
					}
				}

				// 一下所有操作应该是原子性的
				// Step (1): 执行一些预屏障工作,一般是不执行或执行一些轻量级的工作
				operatorChain.prepareSnapshotPreBarrier(checkpointId);

				// Step (2): 将barrier向下游广播出去
				operatorChain.broadcastCheckpointBarrier(
						checkpointId,
						checkpointMetaData.getTimestamp(),
						checkpointOptions);

				// Step (3): 对所有算子进行快照操作,该步骤是异步操作,不影响数据流的正常处理
				checkpointState(checkpointMetaData, checkpointOptions, checkpointMetrics);

			});

			return true;
		} else {
			actionExecutor.runThrowing(() -> {
				// Task没有处于RUNNING状态,向下游广播CancelCheckpointMarker事件,取消此次CK
				final CancelCheckpointMarker message = new CancelCheckpointMarker(checkpointMetaData.getCheckpointId());
				recordWriter.broadcastEvent(message);
			});

			return false;
		}
	}

接下来我们讲解StreamTask执行快照操作的具体过程。

  1. CheckpointingOperation 执行CK操作
public abstract class StreamTask<OUT, OP extends StreamOperator<OUT>>
		extends AbstractInvokable
		implements AsyncExceptionHandler {
	private void checkpointState(
			CheckpointMetaData checkpointMetaData,
			CheckpointOptions checkpointOptions,
			CheckpointMetrics checkpointMetrics) throws Exception {
		//创建CheckpointStreamFactory实例,用于具体的状态存储,
		//有Memory和FS两种实现,分别支持内存和文件文件类型系统的数据流输出
		CheckpointStreamFactory storage = checkpointStorage.resolveCheckpointStorageLocation(
				checkpointMetaData.getCheckpointId(),
				checkpointOptions.getTargetLocation());
		// CheckpointingOperation 封装了CK执行的具体操作
		CheckpointingOperation checkpointingOperation = new CheckpointingOperation(
			this,
			checkpointMetaData,
			checkpointOptions,
			storage,
			checkpointMetrics);
		//执行CK操作
		checkpointingOperation.executeCheckpointing();
	}
}
private static final class CheckpointingOperation {
	public void executeCheckpointing() throws Exception {
		//对StreamTask的所有算子创建执行快照操作的OperatorSnapshotFutures对象,
		//并将所有算子的快照操作存储在operatorSnapshotsInProgress集合中
		for (StreamOperator<?> op : allOperators) {
			checkpointStreamOperator(op);
		}
		
		//。。。

		//AsyncCheckpointRunnable线程执行具体快照操作
		AsyncCheckpointRunnable asyncCheckpointRunnable = new AsyncCheckpointRunnable(
			owner,
			operatorSnapshotsInProgress,
			checkpointMetaData,
			checkpointMetrics,
			startAsyncPartNano);
		//通过StreamTask的asyncOperationsThreadPool线程池,异步执行operatorSnapshotsInProgress集合中所有算子的快照操作
		owner.cancelables.registerCloseable(asyncCheckpointRunnable);
		owner.asyncOperationsThreadPool.execute(asyncCheckpointRunnable);
	}

	private void checkpointStreamOperator(StreamOperator<?> op) throws Exception {
			if (null != op) {
				//将当前算子的快照操作封装到OperatorSnapshotFutures中
				OperatorSnapshotFutures snapshotInProgress = op.snapshotState(
						checkpointMetaData.getCheckpointId(),
						checkpointMetaData.getTimestamp(),
						checkpointOptions,
						storageLocation);
				operatorSnapshotsInProgress.put(op.getOperatorID(), snapshotInProgress);
			}
		}
}
  1. 将算子中的状态快照操作封装到OperatorSnapshotFutures 中
    从此处我们可以看出,原生状态和管理状态的状态生成过程不同。
    (1)原生状态主要通过从snapshotContext中获取原生状态的快照操作;
    (2)管理状态主要通过operatorStateBackend&keyedStateBackend进行状态管理,并根据StateBackend的不同实现将状态写入内存或外部文件系统中。
public final OperatorSnapshotFutures snapshotState(long checkpointId, long timestamp, CheckpointOptions checkpointOptions,
			CheckpointStreamFactory factory) throws Exception {
		//1.如果有keyedStateBackend ,获取对于的KeyGroupRange 
		KeyGroupRange keyGroupRange = null != keyedStateBackend ?
				keyedStateBackend.getKeyGroupRange() : KeyGroupRange.EMPTY_KEY_GROUP_RANGE;
		//2.OperatorSnapshotFutures 对象,封装当前算子的状态快照操作
		OperatorSnapshotFutures snapshotInProgress = new OperatorSnapshotFutures();
		//3.存储快照过程需要的上下文信息
		StateSnapshotContextSynchronousImpl snapshotContext = new StateSnapshotContextSynchronousImpl(
			checkpointId,
			timestamp,
			factory,
			keyGroupRange,
			getContainingTask().getCancelables());

		try {
			//执行快照操作
			snapshotState(snapshotContext);
			//设置KeyedStateRawFuture&OperatorStateRawFuture,用于处理原生数据快照
			snapshotInProgress.setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
			snapshotInProgress.setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture());
			//将operatorStateBackend&keyedStateBackend的状态快照方法注册到snapshotInProgress中,等待执行
			if (null != operatorStateBackend) {
				//设置OperatorState快照的异步future
				snapshotInProgress.setOperatorStateManagedFuture(
					operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
			}

			if (null != keyedStateBackend) {
				//设置KeyedState快照的异步future
				snapshotInProgress.setKeyedStateManagedFuture(
					keyedStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
			}
		} catch (Exception snapshotException) {
			//。。。
		}
		//snapshotInProgress中封装了当前算子需要执行的所有快照操作
		return snapshotInProgress;
	}
  1. AsyncCheckpointRunnable 线程的定义和执行
    所有的状态快照操作都会被封装到OperatorSnapshotFutures对象中,最终通过AsyncCheckpointRunnable 线程触发执行。
protected static final class AsyncCheckpointRunnable implements Runnable, Closeable {
	@Override
	public void run() {
		//1.为当前线程初始化文件系统安全网,确保数据正确写入
		FileSystemSafetyNet.initializeSafetyNetForThread();
		try {
			//发送给JM的CK数据
			TaskStateSnapshot jobManagerTaskOperatorSubtaskStates =
				new TaskStateSnapshot(operatorSnapshotsInProgress.size());
			//TaskExecutor本地的状态数据
			TaskStateSnapshot localTaskOperatorSubtaskStates =
				new TaskStateSnapshot(operatorSnapshotsInProgress.size());
			//遍历获取StreamTask中所有算子的OperatorSnapshotFutures对象
			for (Map.Entry<OperatorID, OperatorSnapshotFutures> entry : operatorSnapshotsInProgress.entrySet()) {

				OperatorID operatorID = entry.getKey();
				OperatorSnapshotFutures snapshotInProgress = entry.getValue();

				// 用于执行所有状态快照线程操作,会执行KeyedState&OperatorState的快照操作
				OperatorSnapshotFinalizer finalizedSnapshots =
					new OperatorSnapshotFinalizer(snapshotInProgress);
				
				jobManagerTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
					operatorID,
					finalizedSnapshots.getJobManagerOwnedState());

				localTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
					operatorID,
					finalizedSnapshots.getTaskLocalState());
			}

			//。。。
			
			if (asyncCheckpointState.compareAndSet(CheckpointingOperation.AsyncCheckpointState.RUNNING,
				CheckpointingOperation.AsyncCheckpointState.COMPLETED)) {
				//异步快照完成,向JM汇报CK的执行结果,并将状态发送给JM
				reportCompletedSnapshotStates(
					jobManagerTaskOperatorSubtaskStates,
					localTaskOperatorSubtaskStates,
					asyncDurationMillis);

			} else {
				LOG.debug("{} - asynchronous part of checkpoint {} could not be completed because it was closed before.",
					owner.getName(),
					checkpointMetaData.getCheckpointId());
			}
		} catch (Exception e) {
			//。。。
		}
	}
}

算子中托管状态主要借助KeyedStateBackend&OperatorStateBackend管理,两个状态后端都实现了SnapshotStrategy接口,提供了状态快照方法。
SnapshotStrategy根据不同的状态后端,主要分为HeapSnapshotStrategy和RocksDBSnapshotStrategy,其中RocksDBSnapshotStrategy又分为增量和全量两种子类实现。

  1. 发送AcknowledgeCheckpoint消息到CheckpointCoordinator中
    在StreamTask中所有算子都完成状态数据的快照之后,Task实例会将TaskStateSnapshot消息发送给JM的CheckpointCoordinator,并在CheckpointCoordinator中完成后续操作,例如确认接受到所有Task实例的Ack消息以及将当前的PendingCheckpoint转换为CompleteCheckpoint,并将CK元数据写到外部持久化文件系统中等操作。


Checkpoint的确认过程主要如下:
(1)StreamTask中所有算子快照完成后,调用StreamTask.reportCompletedSnapshotStates方法将快照等信息发送给TaskStateManager;
(2)TaskStateManager通过CheckpointCoordinatorGateway将CK的Ack信息发送给CheckpointCoordinator;
(3)JobMaster收到Ack消息之后,调用SchedulerNG.acknowledgeCheckpoint方法将Ack消息封装为AcknowledgeCheckpoint对象,传递给CheckpointCoordinator;
(4)CheckpointCoordinator取出对于的PendingCheckpoint,判断是否所有Task实例都Ack消息都收到了,如果所有Task的Ack都已收到,则调用completePendingCheckpoint方法完成当前PendingCheckpoint操作;
(5)将PendingCheckpoint转化为CompleteCheckpoint,此时会将该CK的元数据和算子状态数据序列化到外部文件系统或内存中,并将CompleteCheckpoint添加到集合中;
(6)CheckpointCoordinator遍历所有Task对于的Execution节点,RPC调用ask实例的notifyCheckpointComplete方法。

CheckpointCoordinator持久化CK元数据和算子状态

CheckpointCoordinator受到所有Task实例的ACK响应后,会调用PendingCheckpoint.finalizeCheckpoint将PendingCheckpoint转化为CompleteCheckpoint,并将CK的状态数据写到外部文件系统中。

public CompletedCheckpoint finalizeCheckpoint() throws IOException {

		synchronized (lock) {
		
			try {
				// write out the metadata
				final Savepoint savepoint = new SavepointV2(checkpointId, operatorStates.values(), masterStates);
				final CompletedCheckpointStorageLocation finalizedLocation;

				try (CheckpointMetadataOutputStream out = targetLocation.createMetadataOutputStream()) {
					Checkpoints.storeCheckpointMetadata(savepoint, out);
					finalizedLocation = out.closeAndFinalizeCheckpoint();
				}

				CompletedCheckpoint completed = new CompletedCheckpoint(
						jobId,
						checkpointId,
						checkpointTimestamp,
						System.currentTimeMillis(),
						operatorStates,
						masterStates,
						props,
						finalizedLocation);


				return completed;
			}
			catch (Throwable t) {
				onCompletionPromise.completeExceptionally(t);
				ExceptionUtils.rethrowIOException(t);
				return null; // silence the compiler
			}
		}
	}
最终会调用SavepointV2Serializer 将状态序列化后,写到外部文件系统或内存中
public class SavepointV2Serializer implements SavepointSerializer<SavepointV2> {
	@Override
	public void serialize(SavepointV2 checkpointMetadata, DataOutputStream dos) throws IOException {
		// first: checkpoint ID
		dos.writeLong(checkpointMetadata.getCheckpointId());

		// second: master state
		final Collection<MasterState> masterStates = checkpointMetadata.getMasterStates();
		dos.writeInt(masterStates.size());
		for (MasterState ms : masterStates) {
			serializeMasterState(ms, dos);
		}

		// third: operator states
		Collection<OperatorState> operatorStates = checkpointMetadata.getOperatorStates();
		dos.writeInt(operatorStates.size());

		for (OperatorState operatorState : operatorStates) {
			// Operator ID
			dos.writeLong(operatorState.getOperatorID().getLowerPart());
			dos.writeLong(operatorState.getOperatorID().getUpperPart());

			// Parallelism
			int parallelism = operatorState.getParallelism();
			dos.writeInt(parallelism);
			dos.writeInt(operatorState.getMaxParallelism());
			dos.writeInt(1);

			// Sub task states
			Map<Integer, OperatorSubtaskState> subtaskStateMap = operatorState.getSubtaskStates();
			dos.writeInt(subtaskStateMap.size());
			for (Map.Entry<Integer, OperatorSubtaskState> entry : subtaskStateMap.entrySet()) {
				dos.writeInt(entry.getKey());
				serializeSubtaskState(entry.getValue(), dos);
			}
		}
	}
}

你可能感兴趣的:(flink,checkpoint,源码,flink,大数据,有状态服务,checkpoint,源码)