解决yolov5使用onnxruntime推理时耗时问题(cpu环境)

        yolov5将训练好的模型(yolov5s.pt)转换成onnx格式,在使用转换后的onnx格式的权重进行推理时作者使用如下语句:

# Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            if dnn:
                net.setInput(img)
                pred = torch.tensor(net.forward())
            else:
                pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)

        使用onnx权重模型时进到

pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))

运行时,检测一张图片需要花费160-180ms

此时将上述语句替换成如下:

# Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            if dnn:
                net.setInput(img)
                pred = torch.tensor(net.forward())
            else:
                # pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
                pred = np.array(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
                pred = torch.from_numpy(pred)
        else:  # tensorflow model (tflite, pb, saved_model)

此时运行后,检测同一张图片的耗时减少为80-90ms,时间减少了一半。

你可能感兴趣的:(深度学习模型部署,目标检测,计算机视觉,深度学习,人工智能,pytorch)