torchvision.transforms.ToTensor(细节)对应caffe的转换

目录

1)torchvision.transforms.ToTensor

2)pytorch的图像预处理和caffe中的图像预处理 


写这篇文章的初衷,就是同事跑过来问我,pytorch对图像的预处理为什么和caffe的预处理存在差距,我也是第一次注意到这个问题;

1)torchvision.transforms.ToTensor

直接贴代码:

第一段代码:

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'

第二段代码: 

def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic) or _is_numpy_image(pic)):
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

    if isinstance(pic, np.ndarray):
        # handle numpy array
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img

在第二段代码中,可以看出图像进来以后,先进行通道转换,然后判断图像类型,若是uint8类型,就除以255;否则返回原图。

torchvision.transforms.ToTensor(细节)对应caffe的转换_第1张图片

在使用opencv读图时,图像读入后的数据类型就是uint8,所以若是自己做实验,想看看transform后的效果,传入随意数据作为图片,记得使用方法如下:

im = np.ones([112, 112, 3])#图像是3*112*112大小,像素值为1,数据类型float64
im = np.array(im, dtype = np.uint8)#将数据float64转换成uint8

2)pytorch的图像预处理和caffe中的图像预处理 

在常规使用中,pytorch的图像预处理:

test_transform = transforms.Compose(
    [transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])  # range [0.0, 1.0] -> [-1.0,1.0]

im_tensor = test_transform(im).to(torch.device("cuda:0" if torch.cuda.is_available() else "cpu")).unsqueeze(0)
对应到caffe中的预处理操作:
scale = 0.0078125
mean_value = 127.5

tempimg = (tempimg - mean_value) * scale  # done in imResample function wrapped by python

tempimg = tempimg.transpose(0, 3, 1, 2)

 参考:

https://pytorch-cn.readthedocs.io/zh/latest/package_references/Tensor/

https://blog.csdn.net/bublebee/article/details/88993467

你可能感兴趣的:(深度学习pytorch使用)