“python有了GIL,为什么还有线程锁?“
python gil教程2020-10-07 06:24:23人已围观
有没有易懂的 Python 多线程爬虫代码
Python 序并行化方面多少声名狼藉。撇开技术上的问题如线程的实现和 GIL1,我觉得错教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏“重”。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。
传统的例子
简单搜索下“Python 多线程教程”,不难发现几乎所有的教程都给出涉及类和队列的例子:
#Example.py'''
Standard Producer/Consumer Threading Pattern
'''import time
import threading
import Queue
class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue
def run(self):
while True:
# queue.get() blocks the current thread until
# an item is retrieved.
msg = self._queue.get()
# Checks if the current message is
# the "Poison Pill"
if isinstance(msg, str) and msg == 'quit': # if so, exists the loop
break
# "Processes" (or in our case, prints) the queue item
print "I'm a thread, and I received %s!!" % msg # Always be friendly!
print 'Bye byes!'def Producer():
# Queue is used to share items between
# the threads.
queue = Queue.Queue() # Create an instance of the worker
worker = Consumer(queue) # start calls the internal run() method to
# kick off the thread
worker.start()
# variable to keep track of when we started
start_time = time.time()
# While under 5 seconds..
while time.time() - start_time < 5:
# "Produce" a piece of work and stick it in
# the queue for the Consumer to process
queue.put('something at %s' % time.time()) # Sleep a bit just to avoid an absurd number of messages
time.sleep(1) # This the "poison pill" method of killing a thread.
queue.put('quit') # wait for the thread to close down
worker.join()if __name__ == '__main__':
Producer()
哈,看起来有些像 Java 不是吗?
我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。
问题在于…
首先,你需要一个样板类;
其次,你需要一个队列来传递对象;
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。
worker 越多,问题越多
按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。
#Example2.py'''
A more realistic thread pool example
'''import time
import threading
import Queue
import urllib2
class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue
def run(self):
while True:
content = self._queue.get()
if isinstance(content, str) and content == 'quit': break
response = urllib2.urlopen(content) print 'Bye byes!'def Producer():
urls = [ 'http', 'httcom'
'ala.org', 'hle.com'
# etc..
]
queue = Queue.Queue()
worker_threads = build_worker_pool(queue, 4)
start_time = time.time() # Add the urls to process
for url in urls:
queue.put(url)
# Add the poison pillv
for worker in worker_threads:
queue.put('quit') for worker in worker_threads:
worker.join() print 'Done! Time taken: {}'.format(time.time() - start_time)def build_worker_pool(queue, size):
workers = [] for _ in range(size):
worker = Consumer(queue)
worker.start()
workers.append(worker) return workersif __name__ == '__main__':
Producer()
这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……
至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。
何不试试 map
map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。
urls = ['ho.com', 'htdit.com']
results = map(urllib2.urlopen, urls)
上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:
results = []for url in urls:
results.append(urllib2.urlopen(url))
map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。
为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。
在 Python 中有个两个库包含了 map 函数: multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.
这里多扯两句: multiprocessing.dummy? mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!
dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。
所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。2
动手尝试
使用下面的两行代码来引用包含并行化 map 函数的库:
from multiprocessing import Poolfrom multiprocessing.dummy import Pool as ThreadPool
实例化 Pool 对象:
pool = ThreadPool()
这条简单的语句替代了 example2.py 中 build_worker_pool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。
Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。
一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [ 'httorg',
'hon.org/about/',
'hnlamp.com/pub/a/python/2003/04/17/metaclasses.html',
# etc..
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish
pool.close()
pool.join()
实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
# results = [] # for url in urls:# result = urllib2.urlopen(url)# results.append(result)# # ------- VERSUS ------- # # # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls)# # ------- 8 Pool ------- # # pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls)# # ------- 13 Pool ------- # # pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls)
结果:
# Single thread: 14.4 Seconds # 4 Pool: 3.1 Seconds# 8 Pool: 1.4 Seconds# 13 Pool: 1.3 Seconds
很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。
python有了GIL,为什么还有线程锁?
GIL是限制同一个有一个进入Python解释。。。。
而线程锁是由于在线程进行数据操作时数据操作的安全性(同一个进程中线程之间可以共用信息,如果同时对数据进行操作,则会出现公共数据错误)
其实线程锁完全可以替代GIL,但是Python的后续功能模块都是加在GIL基础上的,所以无法更改或去掉GIL,这就是Python语言最大的bug…只能用多进程或协程改善,或者直接用其他语言写这部分
零基础学Python应该学习哪些入门知识
1、Python入学
Python的特性、优点、缺点、前及 python能做些?
2、Python环境安装
一键安装Python的环境,写出第一段Python代码
3、理解什么是写代码与Python的基本类型
Python的基本类型,包括整形、浮点型;10、8、2、16进制数的意义和转换关系;布尔类型;字符串与字符串常见运算操作
4、Python中表示“组”的概念与定义
了解“组”的概念,以及在Python中用来表示“组”的一些类型,包括:元组、列表、集合和字典。
5、变量与运算符
了解变量的意义与七种运算符,并对每一种运算符的扩展做出详细的讲解
6、分支、循环、条件与枚举
代码的基本逻辑结构,包括条件控制(if else)、循环控制(for in 、while)、表达式与运算符的优先级。此外,还有Python的枚举类型以及Python编码的规范。
7、包、模块、函数与变量作用域
了解Python代码的组织结构核心:包、模块与函数。需要对Python代码的组织结构有一个非常清晰的认识。重点是函数,除了了解函数的基本概念外,还需要了解Python灵活的函数参数机制(默认参数、关键字参数与列表参数)。
8、Python函数
函数是所有语言中都具备的基本代码组织结构。函数的重要性不言而喻。而对于Python来说,函数的用法及其灵活,远比其他语言要强大很多。了解Python函数的定义、调用、序列解包、必须参数、关键字参数、默认参数等诸多内容。
9、高级部分:面向对象
了解面向对象的概念。包括面向对象的三大特性(继承、封装、多态)、类的基本构成元素、python的内置类属性、方法重写、运算符重载、静态方法等
10、正则表达式与JSON
正则表达式也是文本解析中非常重要的知识点。了解如何在Python中编写正则表达式与常见的正则表达式。此外,重点了解包括JSON对象,JSON字符串,Python类型与JSON的转换。
11、Python的高级语法与用法
了解Python进阶部分的高级特性,如枚举、闭包
12、函数式编程: 匿名函数、高阶函数、装饰器
进一步了解函数式编程的lambda、mapeduce、filter以及装饰器
13、实战:原生爬虫
学习如何访问网络数据、获取与解析网络数据、爬虫的基本原理解释。并用最基础语法不使用爬虫框架的原生爬虫项目。
14、Pythonic与Python杂记
了解扩展Python的优秀写法,学会如何写出优质的Pythonic风格的代码。包括:如何让字典保持有序、lmbda表达式的应用等高级Python知识
为什么很多人对Python的GIL耿耿于怀
在python的原始解释器CPython中存在着GIL(Global Interpreter Lock,解锁),因此在解释python代码会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL。
所以,虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核CPU中,多线程也只是做着分时切换而已。
Python的GIL是什么,怎么来的,对性能的影响
#! /usr/bin/python
from threading import Thread
import time
def my_counter():
i = 0
for _ in range(100000000):
i = i 1
return True
def main():
thread_array = {}
start_time = time.time()
for tid in range(2):
t = Thread(target=my_counter)
t.start()
t.join()
end_time = time.time()
print("Total time: {}".format(end_time - start_time))
if __name__ == '__main__':
main()
版权声明:本站所有文章皆为原创,欢迎转载或转发,请保留网站地址和作者信息。