作者简介:大家好,我是车神哥,府学路18号的车神
⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(半分钟献给红绿灯)
个人主页:车手只需要车和手,压力来自论文_府学路18号车神_CSDN博客
官方认证:人工智能领域优质创作者
点赞➕评论➕收藏 == 养成习惯(一键三连)⚡希望大家多多支持~一起加油
专栏
《宝藏》
分享一个小技巧,浅浅分享一下极限学习机及其变种的开源代码,需要的小伙伴下面自取呀~
基本ELM的 MATLAB 代码(带有随机生成的隐藏节点、随机神经元),这些随机隐藏节点包括 sigmoid、RBF、傅里叶级数等。
内核的 ELM 资源(用于回归和多类分类)
OS-ELM 的源代码
感谢意大利鲁昂大学的Vladislavs Dovgalecs对 C/C++ 版本的 ELM 的善意贡献
感谢 A. Akusok, K. Bjork、Y. Miche 和 A. Lendasse 对 ELM 的 Python 版本的善意贡献可以在下面
感谢David Lambert对 ELM 的 Python 版本的善意贡献,可以从这个 ELM 门户网站
简要描述算法和代码链接的博客条目
感谢李东为 ELM 的 Java 版本提供了帮助,可以从这个 ELM 门户网站
L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational Learning with Extreme Learning Machine for Big Data,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 31-34, December 2013.
Jiexiong Tang, Chenwei Deng, and Guang-Bin Huang, “Extreme Learning Machine for Multilayer Perceptron,” (accepted by)IEEE Transactions on Neural Networks and Learning Systems, 2015.
Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, and H. Huang, “Projective Feature Learning for 3D Shapes with Multi-View Depth Images,” Pacific Graphics, vol. 24, no. 7, 2015
A. Akusok, K. Bjork, Y. Miche, and A. Lendasse, “High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications,” IEEE Open Access, vol. 3, 2015
C. Savojardo, P. Fariselli, and R. Casadio, “BETAWARE: a machine-learning tool to detect and predict transmembrane beta barrel proteins in Prokaryotes,” Bioinformatics, Jan 13 2013. [source-codes link: BETAWARE] (for protein and genome analysis)
J.-N. Wang, J.-L. Jin, Y. Geng, S.-L. Sun, H.-L. Xu, Y.-H. Lu and Z.-M. Su, “An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes,” Journal of Computational Chemistry, vol. 34, no. 7, pp. 566-575, 2013 [Free Online Web Service:EEEBPre -ELM based prediction of electronic excitation energies for BODIPY dyes, which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction by the authors. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. The authors hope that this web server would be helpful to theoretical and experimental chemists in related research.]
W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229-242, 2013.
Y. Yang, Y. Wang, and X. Yuan, “Bidirectional extreme learning machine for regression problem and its learning effectiveness,” IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, pp. 1498 - 1505, 2012
J. Cao, Z. Lin, and G.-B. Huang, “Self-adaptive evolutionary extreme learning machine,” Neural Processing Letters, vol. 36, pp. 285-305, 2012.
M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “Fully Complex Extreme Learning Machine,” Neurocomputing, vol. 68, pp. 306-314, 2005.
N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A Fast and Accurate On-line Sequential Learning Algorithm for Feedforward Networks," IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006
G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and Unsupervised Extreme Learning Machines,” (in press) IEEE Transactions on Cybernetics, 2014.
http://www.extreme-learning-machines.org/
❤坚持读Paper,坚持做笔记,坚持学习,坚持刷力扣LeetCode❤!!!
坚持刷题!!!冲击国赛
⚡To Be No.1⚡⚡哈哈哈哈
⚡创作不易⚡,过路能❤关注、收藏、点个赞❤三连就最好不过了
ღ( ´・ᴗ・` )
❤