【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)

 前言

【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第1张图片

 车辆号牌是车辆唯一身份证,它的特殊性与重要性决定车牌识别系统成为城市智能交通管理系统

中不可或缺的重要组成部分。

未来,随着我国城市化进程发展的提速,交通压力将更加严峻,因此智能化交通管理将是今后交通

发展的大方向。今天小编就来带大家探索车牌识别系统!

【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第2张图片

一、环境准备

Python3、 Pycharm 、PIL、cv2 、tkinter 一些车牌图片的素材大家可以自由选择这里就不展示, 

等下会给大家随机找几组效果哈!

第三方库的安装:pip  install +模块名 如安装出现问题可以直接找我私信即可哈

二、效果展示

小程序界面:

【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第3张图片

效果展示:

【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第4张图片

 【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第5张图片

 三、代码展示

主要有部分源码。这里仅展示部分。需要的找我拿完整的哈!

主程序界面:

import  tkinter as  tk
from tkinter.filedialog import  *
from tkinter import  ttk;
import predict
import  cv2
from PIL import  Image,ImageTk
import threading
import time

class Window(ttk.Frame):
    pic_path = ""
    viewHigh = 600
    viewWide = 600
    updataTime = 0
    thread = None
    threadRun = False
    camera = None
    colorTransform = {"green":("绿","#55ff55"),"yello":("黄","#ffff00"),"blue":{"蓝","#6666ff"}}

    def __init__(self,win):
        ttk.Frame.__init__(self,win)
        frame_left = ttk.Frame(self)
        frame_right1 = ttk.Frame(self)
        frame_right2= ttk.Frame(self)
        win.title("车牌识别")
        win.state("normal")
        self.pack(fill=tk.BOTH,expand=tk.YES,padx="5",pady="5")
        frame_left.pack(side=LEFT,expand=1,fill=BOTH)
        frame_right1.pack(side=TOP, expand=1, fill=tk.Y)
        frame_right2.pack(side=RIGHT, expand=0)
        ttk.Label(frame_left, text='原图:').pack(anchor="nw")
        ttk.Label(frame_right1, text='车牌位置:').grid(column=0, row=0, sticky=tk.W)

        from_pic_ctl = ttk.Button(frame_right2, text="打开图片", width=20, command=self.from_pic)

        self.image_ctl = ttk.Label(frame_left)
        self.image_ctl.pack(anchor="nw")

        self.roi_ctl = ttk.Label(frame_right1)
        self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
        ttk.Label(frame_right1, text='识别结果:').grid(column=0, row=2, sticky=tk.W)
        self.r_ctl = ttk.Label(frame_right1, text="")
        self.r_ctl.grid(column=0, row=3, sticky=tk.W)
        self.color_ctl = ttk.Label(frame_right1, text="", width="20")
        self.color_ctl.grid(column=0, row=4, sticky=tk.W)
        from_pic_ctl.pack(anchor="se", pady="5")
        self.predictor = predict.CardPredictor()
        self.predictor.train_svm()

    def from_pic(self):
        self.threadRun = False
        self.pic_path = askopenfilename(title="选择识别图片",filetypes=[("jpg图片","*.jpg")])
        if self.pic_path:
            img_bgr = predict.imreadex(self.pic_path)
            self.imgtk = self.get_imgtk(img_bgr)
            self.image_ctl.configure(image=self.imgtk)
            r,roi,color = self.predictor.predict(img_bgr)
            self.show_roi(r,roi,color)

    def show_roi(self,r,roi,color):
        if r :
            roi = cv2.cvtColor(roi,cv2.COLOR_BGR2RGB)
            roi = Image.fromarray(roi)
            self.imgtk_roi = ImageTk.PhotoImage(image=roi)
            self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
            self.r_ctl.configure(text=str(r))
            self.update_time = time.time()
            try:
                c = self.colorTransform[color]
                self.color_ctl.configure(text=c[0], background=c[1], state='enable')
            except:
                self.color_ctl.configure(state='disabled')
        elif   self.update_time + 8 < time.time():
                self.roi_ctl.configure(state='disabled')
                self.r_ctl.configure(text="")
                self.color_ctl.configure(state='disabled')

    def get_imgtk(self,img_bgr):
        img = cv2.cvtColor(img_bgr,cv2.COLOR_BGR2RGB)
        im = Image.fromarray(img)
        imgtk = ImageTk.PhotoImage(image=im)
        wide = imgtk.width()
        high = imgtk.height()
        if wide>self.viewWide or high > self.viewHigh:
            wide_factor = self.viewWide / wide
            high_factor = self.viewHigh / high
            factor = min(wide_factor,high_factor)
            wide = int(wide*factor)
            if wide <=0 : wide = 1
            high = int(high*factor)
            if high <= 0:high = 1
            im = im.resize((wide,high),Image.ANTIALIAS)
            imgtk = ImageTk.PhotoImage(image=im)
        return imgtk

def close_window():
    print("destroy")
    if window.threadRun :
        window.threadRun = False
        window.thread.join(2.0)
    win.destroy()


if __name__ == '__main__':
    win = tk.Tk()

    window = Window(win)
    win.protocol('WM_DELETE_WINDOW', close_window)
    win.mainloop()

模型训练:

import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json
from matplotlib import pyplot as plt

SZ = 20  # 训练图片长宽
MAX_WIDTH = 1000  # 原始图片最大宽度
Min_Area = 2000  # 车牌区域允许最大面积
PROVINCE_START = 1000


# 读取图片文件
def imreadex(filename):
    return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)


def point_limit(point):
    if point[0] < 0:
        point[0] = 0
    if point[1] < 0:
        point[1] = 0

# 根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves(threshold, histogram):
    up_point = -1  # 上升点
    is_peak = False
    if histogram[0] > threshold:
        up_point = 0
        is_peak = True
    wave_peaks = []
    for i, x in enumerate(histogram):
        if is_peak and x < threshold:
            if i - up_point > 2:
                is_peak = False
                wave_peaks.append((up_point, i))
        elif not is_peak and x >= threshold:
            is_peak = True
            up_point = i
    if is_peak and up_point != -1 and i - up_point > 4:
        wave_peaks.append((up_point, i))
    return wave_peaks


# 根据找出的波峰,分隔图片,从而得到逐个字符图片
def seperate_card(img, waves):
    part_cards = []
    for wave in waves:
        part_cards.append(img[:, wave[0]:wave[1]])
    return part_cards


# 来自opencv的sample,用于svm训练
def deskew(img):
    m = cv2.moments(img)
    if abs(m['mu02']) < 1e-2:
        return img.copy()
    skew = m['mu11'] / m['mu02']
    M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]])
    img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
    return img


# 来自opencv的sample,用于svm训练
def preprocess_hog(digits):
    samples = []
    for img in digits:
        gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
        gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
        mag, ang = cv2.cartToPolar(gx, gy)
        bin_n = 16
        bin = np.int32(bin_n * ang / (2 * np.pi))
        bin_cells = bin[:10, :10], bin[10:, :10], bin[:10, 10:], bin[10:, 10:]
        mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
        hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
        hist = np.hstack(hists)

        # transform to Hellinger kernel
        eps = 1e-7
        hist /= hist.sum() + eps
        hist = np.sqrt(hist)
        hist /= norm(hist) + eps

        samples.append(hist)
    return np.float32(samples)


# 不能保证包括所有省份
provinces = [
    "zh_cuan", "川",
    "zh_e", "鄂",
    "zh_gan", "赣",
    "zh_gan1", "甘",
    "zh_gui", "贵",
    "zh_gui1", "桂",
    "zh_hei", "黑",
    "zh_hu", "沪",
    "zh_ji", "冀",
    "zh_jin", "津",
    "zh_jing", "京",
    "zh_jl", "吉",
    "zh_liao", "辽",
    "zh_lu", "鲁",
    "zh_meng", "蒙",
    "zh_min", "闽",
    "zh_ning", "宁",
    "zh_qing", "靑",
    "zh_qiong", "琼",
    "zh_shan", "陕",
    "zh_su", "苏",
    "zh_sx", "晋",
    "zh_wan", "皖",
    "zh_xiang", "湘",
    "zh_xin", "新",
    "zh_yu", "豫",
    "zh_yu1", "渝",
    "zh_yue", "粤",
    "zh_yun", "云",
    "zh_zang", "藏",
    "zh_zhe", "浙"
]


class StatModel(object):
    def load(self, fn):
        self.model = self.model.load(fn)

    def save(self, fn):
        self.model.save(fn)


class SVM(StatModel):
    def __init__(self, C=1, gamma=0.5):
        self.model = cv2.ml.SVM_create()
        self.model.setGamma(gamma)
        self.model.setC(C)
        self.model.setKernel(cv2.ml.SVM_RBF)
        self.model.setType(cv2.ml.SVM_C_SVC)

    # 训练svm
    def train(self, samples, responses):
        self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

    # 字符识别
    def predict(self, samples):
        r = self.model.predict(samples)
        return r[1].ravel()


class CardPredictor:
    def __init__(self):
        # 车牌识别的部分参数保存在js中,便于根据图片分辨率做调整
        f = open('config.js')
        j = json.load(f)
        for c in j["config"]:
            if c["open"]:
                self.cfg = c.copy()

                break
        else:
            raise RuntimeError('没有设置有效配置参数')

    def __del__(self):
        self.save_traindata()

    def train_svm(self):
        # 识别英文字母和数字
        self.model = SVM(C=1, gamma=0.5)
        # 识别中文
        self.modelchinese = SVM(C=1, gamma=0.5)
        if os.path.exists("svm.dat"):
            self.model.load("svm.dat")
        else:
            chars_train = []
            chars_label = []

            for root, dirs, files in os.walk("train\\chars2"):
                if len(os.path.basename(root)) > 1:
                    continue
                root_int = ord(os.path.basename(root))
                for filename in files:
                    filepath = os.path.join(root, filename)
                    digit_img = cv2.imread(filepath)
                    digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
                    chars_train.append(digit_img)
                    # chars_label.append(1)
                    chars_label.append(root_int)

            chars_train = list(map(deskew, chars_train))
            chars_train = preprocess_hog(chars_train)
            # chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
            chars_label = np.array(chars_label)
            print(chars_train.shape)
            self.model.train(chars_train, chars_label)
        if os.path.exists("svmchinese.dat"):
            self.modelchinese.load("svmchinese.dat")
        else:
            chars_train = []
            chars_label = []
            for root, dirs, files in os.walk("train\\charsChinese"):
                if not os.path.basename(root).startswith("zh_"):
                    continue
                pinyin = os.path.basename(root)
                index = provinces.index(pinyin) + PROVINCE_START + 1  # 1是拼音对应的汉字
                for filename in files:
                    filepath = os.path.join(root, filename)
                    digit_img = cv2.imread(filepath)
                    digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
                    chars_train.append(digit_img)
                    # chars_label.append(1)
                    chars_label.append(index)
            chars_train = list(map(deskew, chars_train))
            chars_train = preprocess_hog(chars_train)
            # chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
            chars_label = np.array(chars_label)
            print(chars_train.shape)
            self.modelchinese.train(chars_train, chars_label)

    def save_traindata(self):
        if not os.path.exists("svm.dat"):
            self.model.save("svm.dat")
        if not os.path.exists("svmchinese.dat"):
            self.modelchinese.save("svmchinese.dat")

    def accurate_place(self, card_img_hsv, limit1, limit2, color):
        row_num, col_num = card_img_hsv.shape[:2]
        xl = col_num
        xr = 0
        yh = 0
        yl = row_num
        # col_num_limit = self.cfg["col_num_limit"]
        row_num_limit = self.cfg["row_num_limit"]
        col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5  # 绿色有渐变
        for i in range(row_num):
            count = 0
            for j in range(col_num):
                H = card_img_hsv.item(i, j, 0)
                S = card_img_hsv.item(i, j, 1)
                V = card_img_hsv.item(i, j, 2)
                if limit1 < H <= limit2 and 34 < S and 46 < V:
                    count += 1
            if count > col_num_limit:
                if yl > i:
                    yl = i
                if yh < i:
                    yh = i
        for j in range(col_num):
            count = 0
            for i in range(row_num):
                H = card_img_hsv.item(i, j, 0)
                S = card_img_hsv.item(i, j, 1)
                V = card_img_hsv.item(i, j, 2)
                if limit1 < H <= limit2 and 34 < S and 46 < V:
                    count += 1
            if count > row_num - row_num_limit:
                if xl > j:
                    xl = j
                if xr < j:
                    xr = j
        return xl, xr, yh, yl

    def predict(self, car_pic):
        print("config:  "+str(self.cfg))
        if type(car_pic) == type(""):
            img = imreadex(car_pic)
        else:
            img = car_pic
        pic_hight, pic_width = img.shape[:2]

        if pic_width > MAX_WIDTH:
            resize_rate = MAX_WIDTH / pic_width
            img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA)

        blur = self.cfg["blur"]
        # 高斯去噪
        if blur > 0:
            img = cv2.GaussianBlur(img, (blur, blur),0)  # 图片分辨率调整
        oldimg = img
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # 去掉图像中不会是车牌的区域
        kernel = np.ones((20, 20), np.uint8)

        img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
        img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

        # 找到图像边缘
        ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        img_edge = cv2.Canny(img_thresh, 100, 200)
        # 使用开运算和闭运算让图像边缘成为一个整体
        kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
        img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
        img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)


        # 查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
        image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
        print('len(contours)', len(contours))
        # 一一排除不是车牌的矩形区域
        car_contours = []
        for cnt in contours:
            rect = cv2.minAreaRect(cnt)
            area_width, area_height = rect[1]
            if area_width < area_height:
                area_width, area_height = area_height, area_width
            wh_ratio = area_width / area_height
            # print(wh_ratio)
            # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
            if wh_ratio > 2 and wh_ratio < 5.5:
                car_contours.append(rect)
                box = cv2.boxPoints(rect)
                box = np.int0(box)
            # oldimg = cv2.drawConours(oldimg, [box], 0, (0, 0, 255), 2)
            # cv2.imshow("edge4", oldimg)
            # print(rect)

        print(len(car_contours))

        print("精确定位")
        card_imgs = []
        # 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
        for rect in car_contours:
            if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
                angle = 1
            else:
                angle = rect[2]
            rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除

            box = cv2.boxPoints(rect)
            print("box_ :" +str(box) )
            heigth_point = right_point = [0, 0]
            left_point = low_point = [pic_width, pic_hight]
            for point in box:
                if left_point[0] > point[0]:
                    left_point = point
                if low_point[1] > point[1]:
                    low_point = point
                if heigth_point[1] < point[1]:
                    heigth_point = point
                if right_point[0] < point[0]:
                    right_point = point

            if left_point[1] <= right_point[1]:  # 正角度
                new_right_point = [right_point[0], heigth_point[1]]
                pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(new_right_point)
                point_limit(heigth_point)
                point_limit(left_point)
                card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
                print("card_img :" + str(card_img))
                card_imgs.append(card_img)
            # cv2.imshow("card", card_img)
            # cv2.waitKey(0)
            elif left_point[1] > right_point[1]:  # 负角度

                new_left_point = [left_point[0], heigth_point[1]]
                pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(right_point)
                point_limit(heigth_point)
                point_limit(new_left_point)
                card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
                card_imgs.append(card_img)
            # cv2.imshow("card", card_img)
            # cv2.waitKey(0)
        # 开始使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
        colors = []
        for card_index, card_img in enumerate(card_imgs):
            green = yello = blue = black = white = 0
            card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
            # 有转换失败的可能,原因来自于上面矫正矩形出错
            if card_img_hsv is None:
                continue
            row_num, col_num = card_img_hsv.shape[:2]
            card_img_count = row_num * col_num

            for i in range(row_num):
                for j in range(col_num):
                    H = card_img_hsv.item(i, j, 0)
                    S = card_img_hsv.item(i, j, 1)
                    V = card_img_hsv.item(i, j, 2)
                    if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                        yello += 1
                    elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                        green += 1
                    elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                        blue += 1

                    if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                        black += 1
                    elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                        white += 1
            color = "no"

            limit1 = limit2 = 0
            if yello * 2 >= card_img_count:
                color = "yello"
                limit1 = 11
                limit2 = 34  # 有的图片有色偏偏绿
            elif green * 2 >= card_img_count:
                color = "green"
                limit1 = 35
                limit2 = 99
            elif blue * 2 >= card_img_count:
                color = "blue"
                limit1 = 100
                limit2 = 124  # 有的图片有色偏偏紫
            elif black + white >= card_img_count * 0.7:  # TODO
                color = "bw"
            print(color)
            colors.append(color)
            print(blue, green, yello, black, white, card_img_count)
            # cv2.imshow("color", card_img)
            # cv2.waitKey(0)
            if limit1 == 0:
                continue
            # 以上为确定车牌颜色
            # 以下为根据车牌颜色再定位,缩小边缘非车牌边界

        # 以上为车牌定位
        # 以下为识别车牌中的字符
        predict_result = []
        roi = None
        card_color = None
        for i, color in enumerate(colors):
            if color in ("blue", "yello", "green"):
                card_img = card_imgs[i]
                gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
                # 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
                if color == "green" or color == "yello":
                    gray_img = cv2.bitwise_not(gray_img)
                ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                # 查找水平直方图波峰
                x_histogram = np.sum(gray_img, axis=1)
                x_min = np.min(x_histogram)
                x_average = np.sum(x_histogram) / x_histogram.shape[0]
                x_threshold = (x_min + x_average) / 2
                wave_peaks = find_waves(x_threshold, x_histogram)
                if len(wave_peaks) == 0:
                    print("peak less 0:")
                    continue
                # 认为水平方向,最大的波峰为车牌区域
                wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                gray_img = gray_img[wave[0]:wave[1]]
                # 查找垂直直方图波峰
                row_num, col_num = gray_img.shape[:2]
                # 去掉车牌上下边缘1个像素,避免白边影响阈值判断
                gray_img = gray_img[1:row_num - 1]
                y_histogram = np.sum(gray_img, axis=0)
                y_min = np.min(y_histogram)
                y_average = np.sum(y_histogram) / y_histogram.shape[0]
                y_threshold = (y_min + y_average) / 5  # U和0要求阈值偏小,否则U和0会被分成两半

                wave_peaks = find_waves(y_threshold, y_histogram)

                # for wave in wave_peaks:
                #	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2)
                # 车牌字符数应大于6
                if len(wave_peaks) <= 6:
                    print("peak less 1:", len(wave_peaks))
                    continue

                wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                max_wave_dis = wave[1] - wave[0]
                # 判断是否是左侧车牌边缘
                if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis / 3 and wave_peaks[0][0] == 0:
                    wave_peaks.pop(0)

                # 组合分离汉字
                cur_dis = 0
                for i, wave in enumerate(wave_peaks):
                    if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
                        break
                    else:
                        cur_dis += wave[1] - wave[0]
                if i > 0:
                    wave = (wave_peaks[0][0], wave_peaks[i][1])
                    wave_peaks = wave_peaks[i + 1:]
                    wave_peaks.insert(0, wave)

                # 去除车牌上的分隔点
                point = wave_peaks[2]
                if point[1] - point[0] < max_wave_dis / 3:
                    point_img = gray_img[:, point[0]:point[1]]
                    if np.mean(point_img) < 255 / 5:
                        wave_peaks.pop(2)

                if len(wave_peaks) <= 6:
                    print("peak less 2:", len(wave_peaks))
                    continue
                part_cards = seperate_card(gray_img, wave_peaks)
                for i, part_card in enumerate(part_cards):
                    # 可能是固定车牌的铆钉
                    if np.mean(part_card) < 255 / 5:
                        print("a point")
                        continue
                    part_card_old = part_card
                    w = abs(part_card.shape[1] - SZ) // 2

                    part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value=[0, 0, 0])
                    part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)

                    # part_card = deskew(part_card)
                    part_card = preprocess_hog([part_card])
                    if i == 0:
                        resp = self.modelchinese.predict(part_card)
                        charactor = provinces[int(resp[0]) - PROVINCE_START]
                    else:
                        resp = self.model.predict(part_card)
                        charactor = chr(resp[0])
                    # 判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
                    if charactor == "1" and i == len(part_cards) - 1:
                        if part_card_old.shape[0] / part_card_old.shape[1] >= 7:  # 1太细,认为是边缘
                            continue
                    predict_result.append(charactor)
                roi = card_img
                card_color = color
                break

        return predict_result, roi, card_color  # 识别到的字符、定位的车牌图像、车牌颜色



 小结

好啦!文章内容到这里就正式结束~

车牌识别小程序就写到这里,之后会更新更多内容哦~记得关注我啦

 所有文章完整的素材+源码都在

粉丝白嫖源码福利,请移步至CSDN社区

✨完整的素材等:也可以滴滴我吖!或者点击文末公众号自取免费拿的哈~

往期推荐阅读——

项目1.6 【Pygame小游戏】斗地主我见多了,BUT 这款开源欢乐斗地主,最让人服气~

项目2.2【Pygame小游戏】扫雷游戏50多岁了,但这款我能玩一年~(三个版本集合)

项目0.5  【视频倒放神器】超级玩法:千万不要倒放视频,太魔性了根本停不下来......

项目0.6  【Python小程序】隐藏表白图:“你永远都不知道我喜欢你”(建议保存)

项目0.4  ​​​​​​ Python教程:去除背景,我保证不动她一根头发(附多种方式)

文章汇总——

汇总: Python文章合集 | (入门到实战、游戏、Turtle、案例等)

(文章汇总还有更多你案例等你来学习啦!)

【Opencv实战】一文看懂车牌识别系统全部内容,未来市场前景看好(很赞)_第6张图片

你可能感兴趣的:(小程序,Python,人工智能,python,人工智能,Opencv,车牌识别,机器学习)