学了蛮久的目标检测了,但是有好多细节总是忘或者模棱两可,感觉有必要写博客记录一下学习笔记和一些心得,既可以加深印象又可以方便他人。博客内容集成自各大学习资源,所以图片也就不加水印了,需要自取。本专栏会详细记录本人在研究目标检测过程中的所学所感,主要包括:1.目标检测算法解读,如R-CNN系列、YOLO系列;2.论文阅读笔记;3.其它目标检测相关的概念和技巧,如attention机制的应用。由于水平有限,不少地方可能会有不准确甚至错误,也希望大家多多包涵并指正一下!
目标检测整体的框架是由backbone、neck和head组成的,所以在学习具体的目标检测算法之前,有必要了解一下常见的卷积神经网络结构,这有利于后面学习目标检测算法的backbone部分。VGGNet虽然结构比较简单,但是我们所熟知的单目标检测算法SSD就是用VGGNet作为backbone的,因此有必要把VGGNet的网络结构简单过一遍,为后续学习打下基础。
VGGNet是由牛津大学的视觉几何组(Visual Geometry Group)和谷歌旗下DeepMind团队的研究员共同研发提出的,获得了2014年ImageNet图像分类竞赛的第二名。可以将VGGNet看成加深版的AlexNet,也是由卷积层和全连接层两部分组成,只不过卷积核尺寸都是3×3的。VGGNet的核心思想是利用较小的卷积核增加网络的深度,其主要贡献是证明了增加网络深度是可以有效提升模型性能的,并且对于其他数据集也有很好的泛化性能。在AlexNet论文中,作者最后指出了网络深度对最终的分类结果有很大的影响,而VGGNet则更加直接地论证了这一结论。常用的VGGNet有VGG16和VGG19两种类型,前者拥有13个核大小均为3×3的卷积层、5个最大池化层和3个全连接层,后者拥有16个核大小均为3×3的卷积层、5个最大池化层和3个全连接层。本文主要针对VGG16进行解读,可以看出VGG19只是多了3个卷积层而已,其它的和VGG16没啥区别。
VGGNet的结构十分简洁,由5个卷积层、3个全连接层和1个softmax层构成,层与层之间使用最大池化连接,隐藏层之间使用的激活函数全都是ReLU。并且网络的参数也是整齐划一的,赏心悦目。
VGGNet使用含有多个小型的3×3卷积核的卷积层来代替卷积核较大的卷积层。2个3×3的卷积核堆叠的感受野相当于一个5×5的卷积核的感受野,而3个3×3的卷积核堆叠的感受野则相当于一个7×7的卷积核的感受野。因此,采用多个小型卷积核,既能减少参数的数量,又能增强网络的非线性映射从而提升网络的表达能力。
为什么可以增加网络的非线性?我们知道激活函数的作用就是给神经网络增加非线性因素,使其可以拟合任意的函数,每个卷积操作后都会通过ReLU激活,ReLU函数就是一个非线性函数。下图展示了为什么使用2个3x3的卷积核可以代替5×5卷积核。
总结一下,使用多个3×3卷积堆叠的作用有两个:一是在不影响感受野的前提下减少了参数;二是增加了网络的非线性。
与AlexNet相比,VGGNet在池化层全部采用的是2×2的小滤波器。
VGGNet的第一层有64个通道,后面的每一层都对通道进行了翻倍,最多达到了512个通道。由于每个通道都代表着一个feature map,这样就使更多的信息可以被提取出来。
这个特征是体现在VGGNet的测试阶段。在进行网络测试时,将训练阶段的3个全连接层替换为3个卷积层,使测试得到的网络没有全连接的限制,能够接收任意宽和高的输入。如果后面3个层都是全连接层,那么在测试阶段就只能将测试的图像全部缩放到固定尺寸,这样就不便于多尺度测试工作的开展。
为什么这样替换之后就可以处理任意尺寸的输入图像了呢?因为1×1卷积一个很重要的作用就是调整通道数。如果下一层输入的特征图需要控制通道数为N,那么设置N个1×1卷积核就可以完成通道数的调整。比如最后需要1000个神经元用于分出1000个类别,那就在最后一层的前面使用1000个1×1的卷积核,这样的到的结果就是(1, 1, 1000)正好可以匹配。
有关1×1卷积的更多内容会在后续分析Inception结构的博客中介绍。
论文中一共提供了6种网络配置,层数从浅到深分别为11层、13层、16层和19层,上面表格里黑色加粗的部分就是该列相对于前一列增加的配置。虽然LRN在AlexNet中起到了作用,但是在VGG中并没有效果,并且该操作会增加内存和计算量,所以在更深的网络结构中,没有使用该操作。最后两列就分别对应了VGG16和VGG19,由于VGG16和VGG19的后三层(全连接层)完全一致,上面的结构图是针对VGG16,后文都以VGG16为例。VGGNet在替换了AlexNet的大卷积核的基础上,增加了新的卷积层,可以分为五个部分,如图中紫色序号①到⑤,VGG19仅仅是在③、④、⑤的部分增加了一个3×3的卷积层。
在卷积层中,为了便于计算,padding都是1。图像在输入进网络后的各个步骤在上图中已经很明了了,这里不做赘述(也可以直接去看第四部分的代码),下面是CS231课件中整个网络的全部参数的计算过程(不考虑偏置):
和AlexNet类似,VGGNet的最后三层都是全连接层,通过softmax层输出1000个预测结果。
下面是VGG16结合批归一化方法的实现代码:
from torch import nn
import torch
class VGG16(nn.Module):
def __init__(self, dim, num_classes):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(dim, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.conv4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.conv5 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(7 * 7 * 512, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = x.view(x.size(0), -1)
output = self.fc(x)
return output
可以把以下FlattenLayer加在全连接层容器最前面,来替换掉forward里的x.view,用下面的代码查看各层输出的尺寸:
class FlattenLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.view(x.size(0), -1)
net = VGG16(3, 1000)
X = torch.rand(1, 3, 224, 224)
for block in net.children():
X = block(X)
print('output shape: ', X.shape)
得到的输出结果如下:
output shape: torch.Size([1, 64, 112, 112])
output shape: torch.Size([1, 128, 56, 56])
output shape: torch.Size([1, 256, 28, 28])
output shape: torch.Size([1, 512, 14, 14])
output shape: torch.Size([1, 512, 7, 7])
output shape: torch.Size([1, 1000])
VGG的结构还是很简单的,和前面博客里的两个网络差别不大,只是深度更深了,从代码也可以看出来,所以这里只是简单记录一下。原论文中还有很多其他的细节,包括网络的测试等等,这里就不逐一细说了,毕竟只是过一下,感兴趣的话可以去读一读原论文:
Very Deep Convolutional Networks for Large-Scale Image Recognition
后面要讲解的GooLeNet会相对而言更巧妙一些~