日撸 Java 三百行学习笔记day38

第 38 天: Dijkstra 算法与 Prim 算法

Dijkstra算法:

Dijkstra算法算是贪心思想实现的,首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。
 

// Step 1. Initialize.
		int[] tempDistanceArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			tempDistanceArray[i] = weightMatrix.getValue(paraSource, i);
		} // Of for i

		int[] tempParentArray = new int[numNodes];
		Arrays.fill(tempParentArray, paraSource);
		// -1 for no parent.
		tempParentArray[paraSource] = -1;

		// Visited nodes will not be considered further.
		boolean[] tempVisitedArray = new boolean[numNodes];
		tempVisitedArray[paraSource] = true;

		// Step 2. Main loops.
		int tempMinDistance;
		int tempBestNode = -1;
		for (int i = 0; i < numNodes - 1; i++) {
			// Step 2.1 Find out the best next node.
			tempMinDistance = Integer.MAX_VALUE;
			for (int j = 0; j < numNodes; j++) {
				// This node is visited.
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				if (tempMinDistance > tempDistanceArray[j]) {
					tempMinDistance = tempDistanceArray[j];
					tempBestNode = j;
				} // Of if
			} // Of for j

			tempVisitedArray[tempBestNode] = true;

			// Step 2.2 Prepare for the next round.
			for (int j = 0; j < numNodes; j++) {
				// This node is visited.
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				// This node cannot be reached.
				if (weightMatrix.getValue(tempBestNode, j) >= MAX_DISTANCE) {
					continue;
				} // Of if

				if (tempDistanceArray[j] > tempDistanceArray[tempBestNode] + weightMatrix.getValue(tempBestNode, j)) {
					// Change the distance.
					tempDistanceArray[j] = tempDistanceArray[tempBestNode] + weightMatrix.getValue(tempBestNode, j);
					// Change the parent. 
					tempParentArray[j] = tempBestNode;
				} // Of if
			} // Of for j

以上是Dijkstra算法核心的部分,第一步,肯定是初始化,要用的到的多个数组,存放节点距离的数组,存放前驱节点的数组,以及被访问过的节点的数组。第二步就是先根据规则要找到下一个最近的节点,先通过比较找到距离最近的下一个节点确立为tempBestNode,再看直接到那个点近,还是通过temBestNode中转再到那个点近。如果通过tempBestNode的距离更近,那就将该tempBestNode加入数组tempParentArray[]。在第二步的最外层的for循环因为是已经有一个节点相当于是根节点了,所以循环条件会是i

关于prim算法:

MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。
 

// Step 1. Initialize.
		// Any node can be the source.
		int tempSource = 0;
		int[] tempDistanceArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			tempDistanceArray[i] = weightMatrix.getValue(tempSource, i);
		} // Of for i

		int[] tempParentArray = new int[numNodes];
		Arrays.fill(tempParentArray, tempSource);
		// -1 for no parent.
		tempParentArray[tempSource] = -1;

		// Visited nodes will not be considered further.
		boolean[] tempVisitedArray = new boolean[numNodes];
		tempVisitedArray[tempSource] = true;

		// Step 2. Main loops.
		int tempMinDistance;
		int tempBestNode = -1;
		for (int i = 0; i < numNodes - 1; i++) {
			// Step 2.1 Find out the best next node.
			tempMinDistance = Integer.MAX_VALUE;
			for (int j = 0; j < numNodes; j++) {
				// This node is visited.
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				if (tempMinDistance > tempDistanceArray[j]) {
					tempMinDistance = tempDistanceArray[j];
					tempBestNode = j;
				} // Of if
			} // Of for j

			tempVisitedArray[tempBestNode] = true;

			// Step 2.2 Prepare for the next round.
			for (int j = 0; j < numNodes; j++) {
				// This node is visited.
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				// This node cannot be reached.
				if (weightMatrix.getValue(tempBestNode, j) >= MAX_DISTANCE) {
					continue;
				} // Of if

				// Attention: the difference from the Dijkstra algorithm.
				if (tempDistanceArray[j] > weightMatrix.getValue(tempBestNode, j)) {
					// Change the distance.
					tempDistanceArray[j] = weightMatrix.getValue(tempBestNode, j);
					// Change the parent.
					tempParentArray[j] = tempBestNode;
				} // Of if
			} // Of for j

			// For test
			System.out.println("The selected distance for each node: " + Arrays.toString(tempDistanceArray));
			System.out.println("The parent of each node: " + Arrays.toString(tempParentArray));
		} // Of for i

		int resultCost = 0;
		for (int i = 0; i < numNodes; i++) {
			resultCost += tempDistanceArray[i];

其实我觉得 Dijkstra 算法与 Prim 算法有很多的相似之处,同样的数组,但是对于距离的比较的时候,就不同了,Prim是只要接下来可以连通的哪个最近就行。最后附上运行结果:日撸 Java 三百行学习笔记day38_第1张图片

 

你可能感兴趣的:(java)