众所周知,matplotlib 是一款功能强大开源的数据可视化模块,凭借着强大的扩展性构建出更高级别的绘图工具接口如seaborn、ggplot。我们来看看往期学习章节内容概述吧~
接下来,我们将继续学习matplotlib 图表绘制具体的功能实操,掌握针对不同图表的绘制
本期,我们重点对折线图的绘制进行学习和掌握,Let's go~
折线图自身的线条的变化,可以在图表中清晰读取到数据变化情况,可以运用的场景特点如下
导入matplotlib.pyplot模块
准备数据,可以使用numpy/pandas整理数据
调用pyplot.plot()绘制折线图
本期,我们使用折线图来展示从 10份 所有文章访问量数据展示
import random
x_data = ["10月{}日".format(i+1) for i in range(30)]
y_view = [random.randint(50,200) for i in range(30)]
复制代码
import matplotlib.pyplot as plt
import random
plt.rcParams["font.sans-serif"]=['SimHei']
plt.rcParams["axes.unicode_minus"]=False
x_data = ["10月{}日".format(i+1) for i in range(30)]
y_view = [random.randint(50,200) for i in range(30)]
plt.figure(figsize=(20,5),dpi=90)
plt.plot(x_data,y_view)
plt.xticks(rotation=45)
plt.title("访问量分析")
plt.xlabel("日期")
plt.ylabel("访问量")
plt.show()
复制代码
属性值 | 说明 |
---|---|
"-" 、"solid" | 默认实线显示 |
"--"、"dashed" | 虚线 |
"-." "dashdot" | 点划线 |
":"、"dotted" | 虚线 |
"None" """" | 空 |
颜色简称:
属性值 | 说明 | 属性值 | 说明 |
---|---|---|---|
"b"/"bule" | 蓝色 | "m"/"magenta" | 品红 |
"g" /"green" | 绿色 | "y"/"yellow" | 黄色 |
"r"/"red" | 红色 | "k"/"black" | 黑色 |
"c"/"cyan" | 青色 | "w"/"white" | 白色 |
rgb
marker 标记物通常在折线图plot、散点图scatter和误差图errorbar上应用
marker 提供多达40个标记的样式可供选择,具体详情看见marker官方说明
marker 在图表中常用的有如下:
属性值 | 说明 | 属性值 | 说明 |
---|---|---|---|
"o" | ⏺️圆圈标记 | "8" | 八边形 |
"v" | 倒三角标记 | "s" | ⏹️正方形标记 |
"^" | 正三角标记 | "*" | ⭐星号 |
"<" | ◀️左三角标记 | "+" | ➕加号 |
">" | ▶️右三角标记 | "x" | X星星 |
"1" | 向下Y标记 | "D" | 钻石标记 |
"2" | 向上Y标记 | " | " |
"3" | 向左Y标记 | "_" | _水平线标记 |
"4" | 向右Y标记 | "p" | ⭐五角星标记 |
标记还提供其他方法
属性值 | 说明 |
---|---|
"full" | 整个标记 |
"left" | 左边标记一半 |
"right" | 右边标记一半 |
"bottom" | 底部标记一半 |
"top" | 顶部标记一半 |
"none" | 无填充 |
# 直线属性
plt.plot(x_data,y_view,linestyle="--"
,marker="o",markeredgecolor="g",fillstyle="left")
复制代码
在matplotlib官网对直线2D属性有更多的介绍
设置X轴名称:pyplot.xlabel(str)
设置y轴名称:pyplot.ylabel(str)
ticks:列表类型,表示x轴范围
rotation:翻转角度
坐标轴位置设置需要通过pyplot.gca()先获取当前的Axes
然后调用ax.spines[].set_position()设置位置
ax.spines['bottom'].set_position(('axes',0.5)) 表示将x轴设置在y轴50%处
pyplot.annotate() 展示指定坐标点的(x,y)值
常用接口参数说明:
参数 | 说明 |
---|---|
txt | 展示的文本 |
xy | 注释的(x,y) |
xytext | xy展示的文本 |
color | 展示的文本颜色 |
max_id = np.argmax(y_view)
show_max = '['+str(x_data[max_id])+','+str(y_view[max_id])+']'
plt.figure(figsize=(20,5),dpi=90)
ax= plt.gca()
ax.spines["left"].set_position(('axes',0.5))
plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")
plt.xticks(ticks=np.arange(0,30),rotation=60)
plt.annotate(show_max, xy=(x_data[max_id],y_view[max_id] ), xytext=(x_data[max_id],y_view[max_id]), color='r')
复制代码
在一个图表中,我们可以多次调用plot()绘制多条折线展示在同一个表格中
```python
star_view = [random.randint(100,200) for i in range(30)]
plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right")
```
复制代码
当一个图表中存在多个折线图时,我们需要使用图例管理来对每个折线代表对象
pyplot.legend(loc): 对图表中折线进行说明
loc参数属性值:
属性 | 代码 | 属性 | 代码 |
---|---|---|---|
'best' | 0 | 'right' | 5 |
'upper right' | 1 | 'center left' | 6 |
'upper left' | 2 | 'center right' | 7 |
'lower left' | 3 | 'lower center' | 8 |
'lower right' | 4 | 'upper center' | 9 |
'center' | 10 |
对上述代码plot()方法添加label属性,注释每条折线的对象
plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left",label="all")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right",label="star")
plt.legend()
复制代码
本期,我们对matplotlib 模块 折线图plot()相关方法和属性进行,大家在平时工作中可以多多实践,折线图还是用的比较多的
以上是本期内容,欢迎大家点赞评论,下期见~