Python学习---使用k-means算法的文本文档簇

Clustering text documents using k-means This is an example showing how
the scikit-learn can be used to cluster documents by topics using a
bag-of-words approach. This example uses a scipy.sparse matrix to
store the features instead of standard numpy arrays.

Two feature extraction methods can be used in this example:

TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the
most frequent words to features indices and hence compute a word
occurrence frequency (sparse) matrix. The word frequencies are then
reweighted using the Inverse Document Frequency (IDF) vector collected
feature-wise over the corpus.

HashingVectorizer hashes word occurrences to a fixed dimensional
space, possibly with collisions. The word count vectors are then
normalized to each have l2-norm equal to one (projected to the
euclidean unit-ball) which seems to be important for k-means to work
in high dimensional space.

HashingVectorizer does not provide IDF weighting as this is a
stateless model (the fit method does nothing). When IDF weighting is
needed it can be added by pipelining its output to a TfidfTransformer
instance.

Two algorithms are demoed: ordinary k-means and its more scalable
cousin minibatch k-means.

Additionally, latent semantic analysis can also be used to reduce
dimensionality and discover latent patterns in the data.

It can be noted that k-means (and minibatch k-means) are very
sensitive to feature scaling and that in this case the IDF weighting
helps improve the quality of the clustering by quite a lot as measured
against the “ground truth” provided by the class label assignments of
the 20 newsgroups dataset.

This improvement is not visible in the Silhouette Coefficient which is
small for both as this measure seem to suffer from the phenomenon
called “Concentration of Measure” or “Curse of Dimensionality” for
high dimensional datasets such as text data. Other measures such as
V-measure and Adjusted Rand Index are information theoretic based
evaluation scores: as they are only based on cluster assignments
rather than distances, hence not affected by the curse of
dimensionality.

Note: as k-means is optimizing a non-convex objective function, it
will likely end up in a local optimum. Several runs with independent
random init might be necessary to get a good convergence.

# Author: Peter Prettenhofer 
#         Lars Buitinck
# License: BSD 3 clause

from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics

from sklearn.cluster import KMeans, MiniBatchKMeans

import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np


# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")

# parse commandline arguments
op = OptionParser()
op.add_option(
    "--lsa",
    dest="n_components",
    type="int",
    help="Preprocess documents with latent semantic analysis.",
)
op.add_option(
    "--no-minibatch",
    action="store_false",
    dest="minibatch",
    default=True,
    help="Use ordinary k-means algorithm (in batch mode).",
)
op.add_option(
    "--no-idf",
    action="store_false",
    dest="use_idf",
    default=True,
    help="Disable Inverse Document Frequency feature weighting.",
)
op.add_option(
    "--use-hashing",
    action="store_true",
    default=False,
    help="Use a hashing feature vectorizer",
)
op.add_option(
    "--n-features",
    type=int,
    default=10000,
    help="Maximum number of features (dimensions) to extract from text.",
)
op.add_option(
    "--verbose",
    action="store_true",
    dest="verbose",
    default=False,
    help="Print progress reports inside k-means algorithm.",
)

print(__doc__)
op.print_help()
print()


def is_interactive():
    return not hasattr(sys.modules["__main__"], "__file__")


# work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:
    op.error("this script takes no arguments.")
    sys.exit(1)


# #############################################################################
# Load some categories from the training set
categories = [
    "alt.atheism",
    "talk.religion.misc",
    "comp.graphics",
    "sci.space",
]
# Uncomment the following to do the analysis on all the categories
# categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

dataset = fetch_20newsgroups(
    subset="all", categories=categories, shuffle=True, random_state=42
)

print("%d documents" % len(dataset.data))
print("%d categories" % len(dataset.target_names))
print()

labels = dataset.target
true_k = np.unique(labels).shape[0]

print("Extracting features from the training dataset using a sparse vectorizer")
t0 = time()
if opts.use_hashing:
    if opts.use_idf:
        # Perform an IDF normalization on the output of HashingVectorizer
        hasher = HashingVectorizer(
            n_features=opts.n_features,
            stop_words="english",
            alternate_sign=False,
            norm=None,
        )
        vectorizer = make_pipeline(hasher, TfidfTransformer())
    else:
        vectorizer = HashingVectorizer(
            n_features=opts.n_features,
            stop_words="english",
            alternate_sign=False,
            norm="l2",
        )
else:
    vectorizer = TfidfVectorizer(
        max_df=0.5,
        max_features=opts.n_features,
        min_df=2,
        stop_words="english",
        use_idf=opts.use_idf,
    )
X = vectorizer.fit_transform(dataset.data)

print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()

if opts.n_components:
    print("Performing dimensionality reduction using LSA")
    t0 = time()
    # Vectorizer results are normalized, which makes KMeans behave as
    # spherical k-means for better results. Since LSA/SVD results are
    # not normalized, we have to redo the normalization.
    svd = TruncatedSVD(opts.n_components)
    normalizer = Normalizer(copy=False)
    lsa = make_pipeline(svd, normalizer)

    X = lsa.fit_transform(X)

    print("done in %fs" % (time() - t0))

    explained_variance = svd.explained_variance_ratio_.sum()
    print(
        "Explained variance of the SVD step: {}%".format(int(explained_variance * 100))
    )

    print()


# #############################################################################
# Do the actual clustering

if opts.minibatch:
    km = MiniBatchKMeans(
        n_clusters=true_k,
        init="k-means++",
        n_init=1,
        init_size=1000,
        batch_size=1000,
        verbose=opts.verbose,
    )
else:
    km = KMeans(
        n_clusters=true_k,
        init="k-means++",
        max_iter=100,
        n_init=1,
        verbose=opts.verbose,
    )

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))
print()

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_))
print(
    "Silhouette Coefficient: %0.3f"
    % metrics.silhouette_score(X, km.labels_, sample_size=1000)
)

print()


if not opts.use_hashing:
    print("Top terms per cluster:")

    if opts.n_components:
        original_space_centroids = svd.inverse_transform(km.cluster_centers_)
        order_centroids = original_space_centroids.argsort()[:, ::-1]
    else:
        order_centroids = km.cluster_centers_.argsort()[:, ::-1]

    terms = vectorizer.get_feature_names_out()
    for i in range(true_k):
        print("Cluster %d:" % i, end="")
        for ind in order_centroids[i, :10]:
            print(" %s" % terms[ind], end="")
        print()
3387 documents
4 categories
Extracting features from the training dataset using a sparse vectorizer
done in 0.655261s
n_samples: 3387, n_features: 10000
Clustering sparse data with MiniBatchKMeans(batch_size=1000, init_size=1000, n_clusters=4, n_init=1,
                verbose=False)
done in 0.175s
Homogeneity: 0.371
Completeness: 0.401
V-measure: 0.386
Adjusted Rand-Index: 0.318
Silhouette Coefficient: 0.006
Top terms per cluster:
Cluster 0: graphics university uk com posting know host nntp ac thanks
Cluster 1: space henry access toronto digex pat alaska zoo shuttle net
Cluster 2: com nasa gov space article ibm ___ ti jpl don
Cluster 3: god com sandvik people jesus morality christian keith sgi don

Clustering text documents using k-means

你可能感兴趣的:(可视化,数据可视化,python,算法,学习)