现在有这样一个场景:需要周期性地统计近万台设备的实时状态,包括设备 ID、压力、温度、湿度,以及对应的时间戳:
DeviceID, Pressure, Temperature, Humidity, TimeStamp
这些与发生时间相关的一组数据,就是时间序列数据。这些数据的特点是没有严格的关系模型,记录的信息可以表示成键和值的关系。
在实际应用中,时间序列数据通常是持续高并发写入的,例如,需要连续记录数万个设备的实时状态值。同时,时间序列数据的写入主要就是插入新数据,而不是更新一个已存在的数据,也就是说,一个时间序列数据被记录后通常就不会变了,因为它就代表了一个设备在某个时刻的状态值。所以,这种数据的写入特点很简单,就是插入数据快,这就要求我们选择的数据类型,在进行数据插入时,复杂度要低,尽量不要阻塞。
我们在查询时间序列数据时,既有对单条记录的查询(例如查询某个设备在某一个时刻的运行状态信息,对应的就是这个设备的一条记录),也有对某个时间范围内的数据的查询(例如每天早上 8 点到 10 点的所有设备的状态信息)。除此之外,还有一些更复杂的查询,比如对某个时间范围内的数据做聚合计算。这里的聚合计算,就是对符合查询条件的所有数据做计算,包括计算均值、最大 / 最小值、求和等。
针对时间序列数据的“写要快”,Redis 的高性能写特性直接就可以满足了;而针对“查询模式多”,也就是要支持单点查询、范围查询和聚合计算,Redis 提供了保存时间序列数据的两种方案,分别可以基于 Hash 和 Sorted Set 实现,以及基于RedisTimeSeries 模块实现。
Hash 和 Sorted Set 组合的方式有一个明显的好处:它们是 Redis 内在的数据类型,代码成熟和性能稳定。那么,为什么保存时间序列数据,要同时使用这两种类型?
关于 Hash 类型,它有一个特点是,可以实现对单键的快速查询。这就满足了时间序列数据的单键查询需求。我们可以把时间戳作为 Hash 集合的 key,把记录的设备状态值作为 Hash 集合的 value。
但是,Hash 类型有个短板:它并不支持对数据进行范围查询。虽然时间序列数据是按时间递增顺序插入 Hash 集合中的,但 Hash 类型的底层结构是哈希表,并没有对数据进行有序索引。虽然时间序列数据是按时间递增顺序插入 Hash 集合中的,但 Hash 类型的底层结构是哈希表,并没有对数据进行有序索引。
为了能同时支持按时间戳范围的查询,可以用 Sorted Set 来保存时间序列数据,因为它能够根据元素的权重分数来排序。我们可以把时间戳作为 Sorted Set 集合的元素分数,把时间点上记录的数据作为元素本身。
使用 Sorted Set 保存数据后,我们就可以使用 ZRANGEBYSCORE 命令,按照输入的最大时间戳和最小时间戳来查询这个时间范围内的温度值了。
同时使用 Hash 和 Sorted Set,可以满足单个时间点和一个时间范围内的数据查询需求了,但是我们又会面临一个新的问题,也就是我们要解答的第二个问题:如何保证写入 Hash 和 Sorted Set 是一个原子性的操作呢?
这里就涉及到了 Redis 用来实现简单的事务的MULTI 和 EXEC 命令。当多个命令及其参数本身无误时,MULTI 和 EXEC 命令可以保证执行这些命令时的原子性。
续解决第三个问题:如何对时间序列数据进行聚合计算?
聚合计算一般被用来周期性地统计时间窗口内的数据汇总状态,在实时监控与预警等场景下会频繁执行。因为 Sorted Set 只支持范围查询,无法直接进行聚合计算,所以,我们只能先把时间范围内的数据取回到客户端,然后在客户端自行完成聚合计算。这个方法虽然能完成聚合计算,但是会带来一定的潜在风险,也就是大量数据在 Redis 实例和客户端间频繁传输,这会和其他操作命令竞争网络资源,导致其他操作变慢。
为了避免客户端和 Redis 实例间频繁的大量数据传输,我们可以使用 RedisTimeSeries 来保存时间序列数据。RedisTimeSeries 支持直接在 Redis 实例上进行聚合计算。但是,如果我们需要进行大量的聚合计算,同时网络带宽条件不是太好时,Hash 和 Sorted Set 的组合就不太适合了。此时,使用 RedisTimeSeries 就更加合适一些。
RedisTimeSeries 是 Redis 的一个扩展模块。它专门面向时间序列数据提供了数据类型和访问接口,并且支持在 Redis 实例上直接对数据进行按时间范围的聚合计算。
TS.CREATE device:temperature RETENTION 600000 LABELS device_id 1
OK
TS.ADD device:temperature 1596416700 25.1
1596416700
TS.GET device:temperature
25.1
TS.MGET FILTER device_id!=2
1) 1) "device:temperature:1"
2) (empty list or set)
3) 1) (integer) 1596417000
2) "25.3"
2) 1) "device:temperature:3"
2) (empty list or set)
3) 1) (integer) 1596417000
2) "29.5"
3) 1) "device:temperature:4"
2) (empty list or set)
3) 1) (integer) 1596417000
2) "30.1"
TS.RANGE device:temperature 1596416700 1596417120 AGGREGATION avg 180000
1) 1) (integer) 1596416700
2) "25.6"
2) 1) (integer) 1596416880
2) "25.8"
3) 1) (integer) 1596417060
2) "26.1"
与使用 Hash 和 Sorted Set 来保存时间序列数据相比,RedisTimeSeries 是专门为时间序列数据访问设计的扩展模块,能支持在 Redis 实例上直接进行聚合计算,以及按标签属性过滤查询数据集合。
觉得有用的客官可以点赞、关注下!感谢支持谢谢!