B树与B+树的区别

文章目录

  • 一、使用B-树的好处
  • 二、B-树深入
  • 三、B-树的查找
  • 四、B+ 树
  • 五、B-树和B+树的区别
      • B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 log n。而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为O(1)。
      • B+树叶节点两两相连可大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。
      • B+树更适合外部存储。由于内节点无 data 域,每个节点能索引的范围更大更精确
  • 六、使用B+树的好处
  • 七、拓展:MySQL为什么使用B-Tree(B+Tree)&& 存储知识

  • 在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。

  • B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。
    B树与B+树的区别_第1张图片

一、使用B-树的好处

B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。

B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树(B树是一颗多路平衡查找树)它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.
B树与B+树的区别_第2张图片
B-树有如下特点:

  • 所有键值分布在整颗树中(索引值和具体data都在每个节点里);
  • 任何一个关键字出现且只出现在一个结点中;
  • 搜索有可能在非叶子结点结束(最好情况O(1)就能找到数据);
  • 在关键字全集内做一次查找,性能逼近二分查找;

二、B-树深入

B树由来:

定义:B-树是一类树,包括B-树、B+树、B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。
B-树是专门为外部存储器设计的,如磁盘,它对于读取和写入大块数据有良好的性能,所以一般被用在文件系统及数据库中。

定义只需要知道B-树允许每个节点有更多的子节点即可(多叉树)。子节点数量一般在上千,具体数量依赖外部存储器的特性。

先来看看为什么会出现B-树这类数据结构:

传统用来搜索的平衡二叉树有很多,如 AVL 树,红黑树等。这些树在一般情况下查询性能非常好,但当数据非常大的时候它们就无能为力了。原因当数据量非常大时,内存不够用,大部分数据只能存放在磁盘上,只有需要的数据才加载到内存中。一般而言内存访问的时间约为 50 ns,而磁盘在 10 ms 左右。速度相差了近 5 个数量级,磁盘读取时间远远超过了数据在内存中比较的时间。这说明程序大部分时间会阻塞在磁盘 IO 上。那么我们如何提高程序性能?减少磁盘 IO 次数,像 AVL 树,红黑树这类平衡二叉树从设计上无法“迎合”磁盘。
B树与B+树的区别_第3张图片

上图是一颗简单的平衡二叉树,平衡二叉树是通过旋转来保持平衡的,而旋转是对整棵树的操作,若只有部分加载到内存中则无法完成旋转操作。

其次平衡二叉树的高度相对较大为 log n(底数为2),这样逻辑上很近的节点实际可能非常远,无法很好的利用磁盘预读(局部性原理),所以这类平衡二叉树在数据库和文件系统上的选择就被 pass 了。

空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。

我们从“迎合”磁盘的角度来看看B-树的设计:

索引的效率依赖与磁盘 IO 的次数,快速索引需要有效的减少磁盘 IO 次数,如何快速索引呢?索引的原理其实是不断的缩小查找范围,就如我们平时用字典查单词一样,先找首字母缩小范围,再第二个字母等等。平衡二叉树是每次将范围分割为两个区间。

为了更快,B-树每次将范围分割为多个区间,区间越多,定位数据越快越精确。那么如果节点为区间范围,每个节点就较大了。所以新建节点时,直接申请页大小的空间(磁盘存储单位是按 block 分的,一般为 512 Byte。磁盘 IO 一次读取若干个 block,我们称为一页,具体大小和操作系统有关,一般为 4 k,8 k或 16 k),计算机内存分配是按页对齐的,这样就实现了一个节点只需要一次 IO。
B树与B+树的区别_第4张图片

上图是一棵简化的B-树,多叉的好处非常明显,有效的降低了B-树的高度,为底数很大的 log n,底数大小与节点的子节点数目有关,一般一棵B-树的高度在 3 层左右。层数低,每个节点区确定的范围更精确,范围缩小的速度越快(比二叉树深层次的搜索肯定快很多)。上面说了一个节点需要进行一次 IO,那么总 IO 的次数就缩减为了 log n 次。B-树的每个节点是 n 个有序的序列(a1,a2,a3…an),并将该节点的子节点分割成 n+1 个区间来进行索引(X1< a1, a2 < X2 < a3, … , an+1 < Xn < anXn+1 > an)。

点评:B树的每个节点,都是存多个值的,不像二叉树那样,一个节点就一个值,B树把每个节点都给了一点的范围区间,区间更多的情况下,搜索也就更快了,比如:有1-100个数,二叉树一次只能分两个范围,0-50和51-100,而B树,分成4个范围 1-25, 25-50,51-75,76-100一次就能筛选走四分之三的数据。所以作为多叉树的B树是更快的

三、B-树的查找

我们来看看B-树的查找,假设每个节点有 n 个 key值,被分割为 n+1 个区间,注意,每个 key 值紧跟着 data 域,这说明B-树的 key 和 data 是聚合在一起的。一般而言,根节点都在内存中,B-树以每个节点为一次磁盘 IO。
B树与B+树的区别_第5张图片
比如上图中,若搜索 key 为 25 节点的 data,首先在根节点进行二分查找(因为 keys 有序,二分最快),判断 key 25 小于 key 50,所以定位到最左侧的节点,此时进行一次磁盘 IO,将该节点从磁盘读入内存,接着继续进行上述过程,直到找到该 key 为止。

Data* BTreeSearch(Root *node, Key key)
{
    Data* data;

    if(root == NULL)
        return NULL;
    data = BinarySearch(node);
    if(data->key == key)
    {
        return data;
    }else{
        node = ReadDisk(data->next);
        BTreeSearch(node, key);
    }
}

四、B+ 树

B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:

  • 所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)。
  • 为所有叶子结点增加了一个链指针。

简化 B+树 如下图:
B树与B+树的区别_第6张图片
B树与B+树的区别_第7张图片

因为内节点并不存储 data,所以一般B+树的叶节点和内节点大小不同,而B-树的每个节点大小一般是相同的,为一页。
B树与B+树的区别_第8张图片
为了增加 区间访问性,一般会对B+树做一些优化。
如下图带顺序访问的B+树。
B树与B+树的区别_第9张图片

五、B-树和B+树的区别

B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 log n。而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为O(1)。

如下所示B-树/B+树查询节点 key 为 50 的 data。
B树与B+树的区别_第10张图片
从上图可以看出,key 为 50 的节点就在第一层,B-树只需要一次磁盘 IO 即可完成查找。所以说B-树的查询最好时间复杂度是 O(1)。

B树与B+树的区别_第11张图片
由于B+树所有的 data 域都在根节点,所以查询 key 为 50的节点必须从根节点索引到叶节点,时间复杂度固定为 O(log n)。

点评:B树的由于每个节点都有key和data,所以查询的时候可能不需要O(logn)的复杂度,甚至最好的情况是O(1)就可以找到数据,而B+树由于只有叶子节点保存了data,所以必须经历O(logn)复杂度才能找到数据

B+树叶节点两两相连可大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。

B树与B+树的区别_第12张图片

根据空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。

B+树可以很好的利用局部性原理,若我们访问节点 key为 50,则 key 为 55、60、62 的节点将来也可能被访问,我们可以利用磁盘预读原理提前将这些数据读入内存,减少了磁盘 IO 的次数。当然B+树也能够很好的完成范围查询。比如查询 key 值在 50-70 之间的节点。

点评:由于B+树的叶子节点的数据都是使用链表连接起来的,而且他们在磁盘里是顺序存储的,所以当读到某个值的时候,磁盘预读原理就会提前把这些数据都读进内存,使得范围查询和排序都很快。

B+树更适合外部存储。由于内节点无 data 域,每个节点能索引的范围更大更精确

这个很好理解,由于B-树节点内部每个 key 都带着 data 域,而B+树节点只存储 key 的副本,真实的 key 和 data 域都在叶子节点存储。前面说过磁盘是分 block 的,一次磁盘 IO 会读取若干个 block,具体和操作系统有关,那么由于磁盘 IO 数据大小是固定的,在一次 IO 中,单个元素越小,量就越大。这就意味着B+树单次磁盘 IO 的信息量大于B-树,从这点来看B+树相对B-树磁盘 IO 次数少。

点评:由于B树的节点都存了key和data,而B+树只有叶子节点存data,非叶子节点都只是索引值,没有实际的数据,这就时B+树在一次IO里面,能读出的索引值更多。从而减少查询时候需要的IO次数!

B树与B+树的区别_第13张图片
从上图可以看出相同大小的区域,B-树仅有 2 个 key,而B+树有 3 个 key。

六、使用B+树的好处

由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间

七、拓展:MySQL为什么使用B-Tree(B+Tree)&& 存储知识

上文说过,红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构,这一节将结合计算机组成原理相关知识讨论B-/+Tree作为索引的理论基础。

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。

下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。
B树与B+树的区别_第14张图片
B树与B+树的区别_第15张图片

你可能感兴趣的:(MySQL,面试题,数据结构,数据库)