如何使用 YOLOv5 训练自己的数据集

跑代码 戳这里:

链接: 如何使用 YOLOv5 训练自己的数据集.

有小伙伴问:他们天天都在 yoloyolo 的,是中国有嘻哈和目标检测有什么联系吗?

如何使用 YOLOv5 训练自己的数据集_第1张图片

YOLO 是“You Only Look Once”的首字母缩写,是一种将图像划分为网格系统的目标检测算法。网格中的每个单元格负责检测自身内部的目标。由于其速度和准确性,YOLO 是最著名的物体检测算法之一。

链接: 如何使用 YOLOv5 训练自己的数据集.
如何使用 YOLOv5 训练自己的数据集_第2张图片

下载代码

YOLOUltralytics 对视觉 AI 的开源研究,结合了在数千小时的研究和开发中获得的经验教训和最佳实践。YOLO 的代码目前托管在 GitHub 上,所以我们使用 git 工具将代码下载下来,并且安装要求的依赖。

如何使用 YOLOv5 训练自己的数据集_第3张图片

数据来源

如何使用 YOLOv5 训练自己的数据集_第4张图片

本次实验数据来源于 Kaggle 的 Global Wheat Detection。

该项目旨在利用这些图像数据来估计不同品种小麦头的密度和大小,便于农民在他们的田地做出管理决策时,可以使用这些数据来评估健康和成熟度

然而,在室外田间图像中准确检测麦头在视觉上具有挑战性。密密麻麻的小麦植株经常重叠,风会模糊照片。两者都使识别单个头部变得困难。

此外,外观因成熟度、颜色、基因型和头部方向而异。最后,由于小麦在世界范围内种植,因此必须考虑不同的品种、种植密度、模式和田间条件。

如何使用 YOLOv5 训练自己的数据集_第5张图片
DATA = '/home/featurize/data/'
df = pd.read_csv(os.path.join(DATA, 'train.csv'))
df.head(2)
image_id 1 height 2 bbox 1 source 2
b6ab77fd7 1024 1024 [834.0, 222.0, 56.0, 36.0]

%matplotlib inline

随机可视化一个样本

%matplotlib inline
idx = random.randint(0, len(df) - 1)
img = cv2.imread(os.path.join(DATA, f'train/{df.iloc[idx].image_id}.jpg'))

def get_box(image_name):
    df_single = df[df.image_id == image_name]
    bboxes = list(df_single.bbox)
    box_list = []
    for box in bboxes:
        box_list.append([int(float(i)) for i in box[1:-1].split(',')])
    return box_list

box_list = get_box(df.iloc[idx].image_id)
fig, ax = plt.subplots(1, 1, figsize=(16, 8))
for box in box_list:
    cv2.rectangle(img, (box[0], box[1]), (box[0]+box[2], box[1]+box[3]), (0, 255, 0), 2)
ax.set_axis_off()
ax.imshow(img);

如何使用 YOLOv5 训练自己的数据集_第6张图片

转换数据

原始数据的标注框数据是 [ xmin, ymin, width, height ],并不符合 YOLO 的原本数据格式。(很多数据集可能都会出现或多或少的不完全匹配的情况,我们需要做的就是将各种各样的标注框转换为 YOLO 的 [ x_center y_center width height ] 格式)

如何使用 YOLOv5 训练自己的数据集_第7张图片
# convert [xmin, ymin, width, height] to  [x_center y_center width height]
LABEL = '/home/featurize/data/labels/train'
for fn in tqdm(df.image_id.unique()):
    box_list = get_box(fn)
    with open(os.path.join(LABEL, f'{fn}.txt'), 'a') as f:
        for box in box_list:
            f.write(f'0 {(box[0] + box[2]/2)/1024} {(box[1] + box[3]/2)/1024} {(box[2])/1024} {(box[3])/1024}\n')

分割训练集与交叉验证集

通常我们会将 20% 的数据分出来作为交叉验证集来对模型的效果进行验证。

from sklearn.model_selection import train_test_split
X_train, X_test = train_test_split(df.image_id.unique(), test_size=0.2, random_state=42)

if not os.path.exists(os.path.join(DATA, 'images/val')):
    os.mkdir(os.path.join(DATA, 'images/val'))
if not os.path.exists(os.path.join(DATA, 'labels/val')):
    os.mkdir(os.path.join(DATA, 'labels/val'))

for i in tqdm(X_test):
    try:
        shutil.move(os.path.join(DATA, f'images/train/{i}.jpg',), os.path.join(DATA, f'images/val/{i}.jpg'))
        shutil.move(os.path.join(DATA, f'labels/train/{i}.txt',), os.path.join(DATA, f'labels/val/{i}.txt'))
    except:
        print(i, 'not in train')

配置数据

如何使用 YOLOv5 训练自己的数据集_第8张图片

要使用 YOLOv5 便捷的训练自己的数据集,那么整理好自己的数据目录结构一定是最快的方式。

dataset/
│   dataset.yaml
│
└───images/
│       └────train/           train 目录存放的是训练的图片
│       │      └────1.jpg   
│       │      └────2.jpg
│       │       ...
│       └────val/             val 目录存放的是交叉验证集的图片
│   
└───labels/
        └────train/
        │      └────1.txt     txt 文件里是对应同名的 images 里的图片标注,每一行为一个标注框
        │      └────2.txt     例:0     0.88                 0.79                  0.09           0.07
        │       ...              类别  标注框中心 x 轴相对坐标  标注框中心 y 轴相对坐标  标注框相对宽度    标注框相对高度
        └────val/             注意:标注框为小数是相对于图片尺寸的归一化  标注框高度 =(框高度 / 图片高度)

训练

(这次训练是基于 Tesla V100-SXM2-16GB 显卡训练的,不同的 GPU 硬件可能需要对 batchsize 进行适当调整)

  • –img 设置图片的大小
  • –batch 设置每个批次送进模型的数据量,俗称 batchsize
  • –epochs 设置训练的轮数
  • –data 设置刚才配置好的 yaml 文件的路径
  • –weights 设置模型(在 coco 数据集上预训练的模型)
!python yolov5/train.py --img 1024 --batch 16 --epochs 10 --data /home/featurize/data/dataset.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=, data=/home/featurize/data/dataset.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=10, batch_size=16, imgsz=1024, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0, patience=100
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  v5.0-419-gc5360f6 torch 1.8.1+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)

hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5  runs (RECOMMENDED)
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/
2021-09-11 17:50:55.202084: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
Overriding model.yaml nc=80 with nc=1

                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  3    156928  models.common.C3                        [128, 128, 3]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1    656896  models.common.SPP                       [512, 512, [5, 9, 13]]        
  9                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 283 layers, 7063542 parameters, 7063542 gradients, 16.4 GFLOPs

Transferred 356/362 items from yolov5s.pt
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 59 weight, 62 weight (no decay), 62 bias
albumentations: version 1.0.3 required by YOLOv5, but version 1.0.0 is currently installed
train: Scanning '/home/featurize/data/labels/train' images and labels...2698 fou
train: New cache created: /home/featurize/data/labels/train.cache
val: Scanning '/home/featurize/data/labels/val' images and labels...675 found, 0
val: New cache created: /home/featurize/data/labels/val.cache
Plotting labels... 

autoanchor: Analyzing anchors... anchors/target = 5.72, Best Possible Recall (BPR) = 0.9991
Image sizes 1024 train, 1024 val
Using 8 dataloader workers
Logging results to runs/train/exp6
Starting training for 10 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       0/9     8.73G   0.08772    0.3469         0       591      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.385       0.51      0.395      0.111

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       1/9     10.2G   0.05916    0.3294         0       796      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.787      0.757      0.785      0.285

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       2/9     10.2G   0.05187      0.33         0       801      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.857      0.826      0.884      0.374

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       3/9     10.2G   0.04985    0.3246         0       524      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.892      0.873      0.919      0.415

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       4/9     10.2G   0.04505    0.3226         0       995      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.876      0.854        0.9      0.399

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       5/9     10.2G   0.04381      0.31         0       497      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.904      0.891      0.936       0.48

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       6/9     10.2G    0.0419    0.3135         0       627      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422       0.91      0.884      0.935      0.493

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       7/9     10.2G    0.0387    0.3026         0       653      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.919       0.89      0.943      0.514

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       8/9     10.2G   0.03727    0.3009         0       557      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.927      0.885      0.945      0.522

     Epoch   gpu_mem       box       obj       cls    labels  img_size
       9/9     10.2G   0.03671    0.2964         0       489      1024: 100%|█| 
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        675      29422      0.925      0.898      0.949      0.531

10 epochs completed in 0.136 hours.
Optimizer stripped from runs/train/exp6/weights/last.pt, 14.5MB
Optimizer stripped from runs/train/exp6/weights/best.pt, 14.5MB
Results saved to runs/train/exp6

查看训练结果

注意上面的 Results saved to runs/train/exp6,这是保存训练结果的路径,下面可视化的路径要和上面保持一致。

plot_results('./runs/train/exp6/results.csv')
image = mi.imread('./runs/train/exp6/results.png')
f, ax = plt.subplots(figsize=(16,8))
ax.set_axis_off()
ax.imshow(image);

如何使用 YOLOv5 训练自己的数据集_第9张图片

模型推断

训练好了以后当然是对目标测试数据集进行推断

  • –source 是目标数据集的目录,目录中是所有需要进行推断的图片文件
  • –weights 是选择之前训练的模型
!python yolov5/detect.py --source /home/featurize/data/test --weights ./runs/train/exp4/weights/best.pt
detect: weights=['./runs/train/exp4/weights/best.pt'], source=/home/featurize/data/test, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False
requirements: /cloud/notebooks/requirements.txt not found, check failed.
YOLOv5  v5.0-419-gc5360f6 torch 1.8.1+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)

Fusing layers... 
Model Summary: 224 layers, 7053910 parameters, 0 gradients, 16.3 GFLOPs
image 1/10 /home/featurize/data/test/2fd875eaa.jpg: 640x640 29 wheats, Done. (0.011s)
image 2/10 /home/featurize/data/test/348a992bb.jpg: 640x640 38 wheats, Done. (0.011s)
image 3/10 /home/featurize/data/test/51b3e36ab.jpg: 640x640 25 wheats, Done. (0.011s)
image 4/10 /home/featurize/data/test/51f1be19e.jpg: 640x640 18 wheats, Done. (0.011s)
image 5/10 /home/featurize/data/test/53f253011.jpg: 640x640 32 wheats, Done. (0.011s)
image 6/10 /home/featurize/data/test/796707dd7.jpg: 640x640 25 wheats, Done. (0.011s)
image 7/10 /home/featurize/data/test/aac893a91.jpg: 640x640 23 wheats, Done. (0.011s)
image 8/10 /home/featurize/data/test/cb8d261a3.jpg: 640x640 29 wheats, Done. (0.011s)
image 9/10 /home/featurize/data/test/cc3532ff6.jpg: 640x640 27 wheats, Done. (0.011s)
image 10/10 /home/featurize/data/test/f5a1f0358.jpg: 640x640 28 wheats, Done. (0.011s)
Results saved to runs/detect/exp3
Done. (0.578s)
plt.subplots(figsize=(16,16))[1].imshow(cv2.cvtColor(cv2.imread('./runs/detect/exp2/2fd875eaa.jpg'),cv2.COLOR_BGR2RGB));

总结

如何使用 YOLOv5 训练自己的数据集_第10张图片

这个笔记本主要是帮助不会使用 YOLO 的小伙伴把代码跑起来而已,赶快试一试吧。

原文链接跑代码: 如何使用 YOLOv5 训练自己的数据集.
image

你可能感兴趣的:(自动驾驶,深度学习,机器学习)