平衡二叉查找树——红黑树

平衡二叉查找树——红黑树

根节点内部节点叶子结点。根节点也是内部节点

红黑树得插入查找删除比较稳定

平衡二叉查找树——红黑树_第1张图片

二叉查找树具有以下性质:左子树的键值小于根的键值,右子树的键值大于根的键值(键值不重复)。

平衡二叉树(AVL树):在符合二叉查找树的条件下,还满足任何节点的两个子树的高度最大差为1。

红黑树的复杂度计算:(有N个节点的二叉树,其高度为Ω(logn))

假设完全二叉树的深度为K

二叉树的性质

  • 在二叉树中的第i层上至多有2^(i-1)个结点(i>=1)。
  • 深度为k的二叉树至多有2^k - 1个节点(k>=1)。
  • 对任何一棵二叉树T,如果其叶结点数目为n0,度为2的节点数目为n2,则n0=n2+1。

满二叉树:深度为k且具有2^k-1个结点的二叉树。即满二叉树中的每一层上的结点数都是最大的结点数。

完全二叉树:深度为k具有n个结点的二叉树,当且仅当每一个结点与深度为k的满二叉树中的编号从1至n的结点一一对应。

  • 具有n个节点的完全二叉树的深度为log2(n + 1)。

性质1:二叉树第i层上的结点数目最多为 2{i-1} (i≥1)

证明:下面用"数学归纳法"进行证明。
        (01) 当i=1时,第i层的节点数目为2{i-1}=2{0}=1。因为第1层上只有一个根结点,所以命题成立。
        (02) 假设当i>1,第i层的节点数目为2{i-1}。这个是根据(01)推断出来的!
               下面根据这个假设,推断出"第(i+1)层的节点数目为2{i}"即可。
                由于二叉树的每个结点至多有两个孩子,故"第(i+1)层上的结点数目" 最多是 "第i层的结点数目的2倍"。即,第(i+1)层上的结点数目最大值=2×2{i-1}=2{i}。
                故假设成立,原命题得证!

性质2:深度为k的二叉树至多有2{k}-1个结点(k≥1)

证明:在具有相同深度的二叉树中,当每一层都含有最大结点数时,其树中结点数最多。利用"性质1"可知,深度为k的二叉树的结点数至多为:
           20+21+…+2k-1=2k-1
           故原命题得证!

性质3:包含n个结点的二叉树的高度至少为log2 (n+1)

证明:根据"性质2"可知,高度为h的二叉树最多有2^h–1个结点。反之,对于包含n个节点的二叉树的高度至少为log2(n+1)。

 性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

证明:因为二叉树中所有结点的度数均不大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度结点数(n1)" + "2度结点数(n2)"。由此,得到等式一。
         (等式一) n=n0+n1+n2
      另一方面,0度结点没有孩子,1度结点有一个孩子,2度结点有两个孩子,故二叉树中孩子结点总数是:n1+2n2。此外,只有根不是任何结点的孩子。故二叉树中的结点总数又可表示为等式二。
         (等式二) n=n1+2n2+1
        由(等式一)和(等式二)计算得到:n0=n2+1。原命题得证!

你可能感兴趣的:(C++)