日撸 Java 三百行(81-90天,CNN 卷积神经网络)

目录

总述
01-10天,基本语法
11-20天,线性数据结构
21-30天,树与二叉树
31-40天,图
41-50天,查找与排序
51-60天,kNN 与 NB
61-70天,决策树与集成学习
71-80天,BP 神经网络
81-90天,CNN 卷积神经网络

最初的代码来自 https://github.com/DeepCompute/cnn. 我曾经在 深度学习基础技术分析4:CNN(含代码分析) 写了一些代码分析, 并在 深度学习C++代码配套教程(5. CNN 卷积神经网络) 将其转成了 C++ 版本. 这里再将某些代码进行修改 (特别是变量名、注释, 并精减掉了并行计算功能), 搞成自己的版本.
数据 train.format 也可以在 https://github.com/FanSmale/sampledata/ 下载.

第 81 天: 数据集读取与存储

以前我们用过 arff (第 51 天) 文件和压缩的评分文件 (第 54 天), 再来一个存储数据的方式. 图片数据还是按结构化的方式来存取 (m*n 点阵和类别).

  1. 这里使用了 java.util.List 类. 我们在前面实现的数据结构, 很多可以直接在 java.util 包中找到. 不过自己写一遍总是好的. 与自己读取并使用 double[][] 来管理数据相比, List 类允许添加数据, 更加灵活. 当然, 效率上会有点影响, 可能是常数倍.
  2. tempLine.split 是我们以前没有使用过的功能. 其实 String 类是的方法是比较丰富的, 为了防止开发者乱改, 该类是 final 的, 不允许继承.
  3. 这个代码的原作者很喜欢用 final, 包括参数列表中的变量, 以避免其值被修改. 我喜欢将它们取掉. 其实没啥区别.
  4. List 是指列表里面只准存储 Instance 类型的变量. 当然, Instance 的子类也行.
  5. Instance 类也是 public 的, 其实我对访问控制也不是很清楚, 编译不出错就还好.
  6. Instance 的 label 是 Double 类型的, 其实换成 double 也可以, 如果已经确定是分类问题, 换成 int 更好.
  7. 最长的就是构造函数, 从文件中读入数据.
package machinelearning.cnn;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * Manage the dataset.
 * 
 * @author Fan Min [email protected].
 */
public class Dataset {

	/**
	 * All instances organized by a list.
	 */
	private List instances;

	/**
	 * The label index.
	 */
	private int labelIndex;

	/**
	 * The max label (label start from 0).
	 */
	private double maxLabel = -1;

	/**
	 *********************** 
	 * The first constructor.
	 *********************** 
	 */
	public Dataset() {
		labelIndex = -1;
		instances = new ArrayList();
	}// Of the first constructor

	/**
	 *********************** 
	 * The second constructor.
	 * 
	 * @param paraFilename
	 *            The filename.
	 * @param paraSplitSign
	 *            Often comma.
	 * @param paraLabelIndex
	 *            Often the last column.
	 *********************** 
	 */
	public Dataset(String paraFilename, String paraSplitSign, int paraLabelIndex) {
		instances = new ArrayList();
		labelIndex = paraLabelIndex;

		File tempFile = new File(paraFilename);
		try {
			BufferedReader tempReader = new BufferedReader(new FileReader(tempFile));
			String tempLine;
			while ((tempLine = tempReader.readLine()) != null) {
				String[] tempDatum = tempLine.split(paraSplitSign);
				if (tempDatum.length == 0) {
					continue;
				} // Of if

				double[] tempData = new double[tempDatum.length];
				for (int i = 0; i < tempDatum.length; i++)
					tempData[i] = Double.parseDouble(tempDatum[i]);
				Instance tempInstance = new Instance(tempData);
				append(tempInstance);
			} // Of while
			tempReader.close();
		} catch (IOException e) {
			e.printStackTrace();
			System.out.println("Unable to load " + paraFilename);
			System.exit(0);
		}//Of try
	}// Of the second constructor

	/**
	 *********************** 
	 * Append an instance.
	 * 
	 * @param paraInstance
	 *            The given record.
	 *********************** 
	 */
	public void append(Instance paraInstance) {
		instances.add(paraInstance);
	}// Of append

	/**
	 *********************** 
	 * Append an instance  specified by double values.
	 *********************** 
	 */
	public void append(double[] paraAttributes, Double paraLabel) {
		instances.add(new Instance(paraAttributes, paraLabel));
	}// Of append

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public Instance getInstance(int paraIndex) {
		return instances.get(paraIndex);
	}// Of getInstance

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public int size() {
		return instances.size();
	}// Of size

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[] getAttributes(int paraIndex) {
		return instances.get(paraIndex).getAttributes();
	}// Of getAttrs

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public Double getLabel(int paraIndex) {
		return instances.get(paraIndex).getLabel();
	}// Of getLabel

	/**
	 *********************** 
	 * Unit test.
	 *********************** 
	 */
	public static void main(String args[]) {
		Dataset tempData = new Dataset("d:/c/cann/data/mnist/train.format", ",", 784);
		Instance tempInstance = tempData.getInstance(0);
		System.out.println("The first instance is: " + tempInstance);
	}// Of main

	/**
	 *********************** 
	 * An instance.
	 *********************** 
	 */
	public class Instance {
		/**
		 * Conditional attributes.
		 */
		private double[] attributes;

		/**
		 * Label.
		 */
		private Double label;

		/**
		 *********************** 
		 * The first constructor.
		 *********************** 
		 */
		private Instance(double[] paraAttrs, Double paraLabel) {
			attributes = paraAttrs;
			label = paraLabel;
		}//Of the first constructor

		/**
		 *********************** 
		 * The second constructor.
		 *********************** 
		 */
		public Instance(double[] paraData) {
			if (labelIndex == -1)
				// No label
				attributes = paraData;
			else {
				label = paraData[labelIndex];
				if (label > maxLabel) {
					// It is a new label
					maxLabel = label;
				} // Of if

				if (labelIndex == 0) {
					// The first column is the label
					attributes = Arrays.copyOfRange(paraData, 1, paraData.length);
				} else {
					// The last column is the label
					attributes = Arrays.copyOfRange(paraData, 0, paraData.length - 1);
				} // Of if
			} // Of if
		}// Of the second constructor

		/**
		 *********************** 
		 * Getter.
		 *********************** 
		 */
		public double[] getAttributes() {
			return attributes;
		}// Of getAttributes

		/**
		 *********************** 
		 * Getter.
		 *********************** 
		 */
		public Double getLabel() {
			if (labelIndex == -1)
				return null;
			return label;
		}// Of getLabel

		/**
		 *********************** 
		 * toString.
		 *********************** 
		 */
		public String toString(){
			return Arrays.toString(attributes) + ", " + label;
		}//Of toString
	}// Of class Instance
}// Of class Dataset

一个管理卷积核尺寸的类. 基础代码, 在网络运行时才能理解它们的作用.

  1. 支持 Size 的相除. 但并不是所有的 Size 都可以除, 方法前面给了例子.
  2. 支持 Size 的相减.
package machinelearning.cnn;

/**
 * The size of a convolution core.
 * 
 * @author Fan Min [email protected].
 */
public class Size {
	/**
	 * Cannot be changed after initialization.
	 */
	public final int width;

	/**
	 * Cannot be changed after initialization.
	 */
	public final int height;

	/**
	 *********************** 
	 * The first constructor.
	 * 
	 * @param paraWidth
	 *            The given width.
	 * @param paraHeight
	 *            The given height.
	 *********************** 
	 */
	public Size(int paraWidth, int paraHeight) {
		width = paraWidth;
		height = paraHeight;
	}// Of the first constructor

	/**
	 *********************** 
	 * Divide a scale with another one. For example (4, 12) / (2, 3) = (2, 4).
	 * 
	 * @param paraScaleSize
	 *            The given scale size.
	 * @return The new size.
	 *********************** 
	 */
	public Size divide(Size paraScaleSize) {
		int resultWidth = width / paraScaleSize.width;
		int resultHeight = height / paraScaleSize.height;
		if (resultWidth * paraScaleSize.width != width
				|| resultHeight * paraScaleSize.height != height)
			throw new RuntimeException("Unable to divide " + this + " with " + paraScaleSize);
		return new Size(resultWidth, resultHeight);
	}// Of divide

	/**
	 *********************** 
	 * Subtract a scale with another one, and add a value. For example (4, 12) -
	 * (2, 3) + 1 = (3, 10).
	 * 
	 * @param paraScaleSize
	 *            The given scale size.
	 * @param paraAppend
	 *            The appended size to both dimensions.
	 * @return The new size.
	 *********************** 
	 */
	public Size subtract(Size paraScaleSize, int paraAppend) {
		int resultWidth = width - paraScaleSize.width + paraAppend;
		int resultHeight = height - paraScaleSize.height + paraAppend;
		return new Size(resultWidth, resultHeight);
	}// Of subtract

	/**
	 *********************** 
	 * @param The
	 *            string showing itself.
	 *********************** 
	 */
	public String toString() {
		String resultString = "(" + width + ", " + height + ")";
		return resultString;
	}// Of toString

	/**
	 *********************** 
	 * Unit test.
	 *********************** 
	 */
	public static void main(String[] args) {
		Size tempSize1 = new Size(4, 6);
		Size tempSize2 = new Size(2, 2);
		System.out.println(
				"" + tempSize1 + " divide " + tempSize2 + " = " + tempSize1.divide(tempSize2));

		System.out.printf("a");

		try {
			System.out.println(
					"" + tempSize2 + " divide " + tempSize1 + " = " + tempSize2.divide(tempSize1));
		} catch (Exception ee) {
			System.out.println(ee);
		} // Of try

		System.out.println(
				"" + tempSize1 + " - " + tempSize2 + " + 1 = " + tempSize1.subtract(tempSize2, 1));
	}// Of main
}// Of class Size

以前我们使用整数型常量 (第 51 天) 和字符型常量 (第 74 天), 其实还可以有枚举类型. 后面的程序我们才能看到其用法.

package machinelearning.cnn;

/**
 * Enumerate all layer types.
 * 
 * @author Fan Min [email protected].
 */
public enum LayerTypeEnum {
	INPUT, CONVOLUTION, SAMPLING, OUTPUT;
}//Of enum LayerTypeEnum

第 82 天: 数学操作

把一些常用的数学操作, 特别是矩阵操作集中在这里管理. 今天要找贴子学习一下 CNN 的原理, 否则很多操作都看不懂.

  1. interface Operator 定义了一个算子, 其主要目的是为了矩阵操作时对每个元素都做一遍, 所以要看 matrixOp 方法, 以及相应的调用才能明白其作用. 这种算子的写法比较绕, 其优点是灵活, 可以增加代码的复用性. 以 Operator 类型的变量 one_value 为例, 其最终目的是获得 1 − A \mathbf{1} - \mathbf{A} 1A 这种矩阵, 即用 1 减去矩阵的各个元素, 获得新的矩阵.
  2. interface OperatorOnTwo 与上一个类似, 不过它支持两个操作数, 进一步支持两个矩阵, 这样, 矩阵加法、减法就不需要单独写代码了.
  3. matrixOp 被重载了以支持不同的参数列表.
  4. rot180 将矩阵放置 180 度. 通过两次翻转实现.
  5. convnValid 是卷积操作. convnFull 为其逆向操作.
  6. scaleMatrix 是均值池化.
  7. kronecker 是池化的逆向操作.
package machinelearning.cnn;

import java.io.Serializable;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;

/**
 * Math operations.
 * 
 * Adopted from cnn-master.
 */
public class MathUtils {

	/**
	 * An interface for different on-demand operators.
	 */
	public interface Operator extends Serializable {
		public double process(double value);
	}// Of interfact Operator

	/**
	 * The one-minus-the-value operator.
	 */
	public static final Operator one_value = new Operator() {
		private static final long serialVersionUID = 3752139491940330714L;

		@Override
		public double process(double value) {
			return 1 - value;
		}// Of process
	};

	/**
	 * The sigmoid operator.
	 */
	public static final Operator sigmoid = new Operator() {
		private static final long serialVersionUID = -1952718905019847589L;

		@Override
		public double process(double value) {
			return 1 / (1 + Math.pow(Math.E, -value));
		}// Of process
	};

	/**
	 * An interface for operations with two operators.
	 */
	interface OperatorOnTwo extends Serializable {
		public double process(double a, double b);
	}// Of interface OperatorOnTwo

	/**
	 * Plus.
	 */
	public static final OperatorOnTwo plus = new OperatorOnTwo() {
		private static final long serialVersionUID = -6298144029766839945L;

		@Override
		public double process(double a, double b) {
			return a + b;
		}// Of process
	};

	/**
	 * Multiply.
	 */
	public static OperatorOnTwo multiply = new OperatorOnTwo() {

		private static final long serialVersionUID = -7053767821858820698L;

		@Override
		public double process(double a, double b) {
			return a * b;
		}// Of process
	};

	/**
	 * Minus.
	 */
	public static OperatorOnTwo minus = new OperatorOnTwo() {

		private static final long serialVersionUID = 7346065545555093912L;

		@Override
		public double process(double a, double b) {
			return a - b;
		}// Of process
	};

	/**
	 *********************** 
	 * Print a matrix
	 *********************** 
	 */
	public static void printMatrix(double[][] matrix) {
		for (int i = 0; i < matrix.length; i++) {
			String line = Arrays.toString(matrix[i]);
			line = line.replaceAll(", ", "\t");
			System.out.println(line);
		} // Of for i
		System.out.println();
	}// Of printMatrix

	/**
	 *********************** 
	 * Rotate the matrix 180 degrees.
	 *********************** 
	 */
	public static double[][] rot180(double[][] matrix) {
		matrix = cloneMatrix(matrix);
		int m = matrix.length;
		int n = matrix[0].length;
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n / 2; j++) {
				double tmp = matrix[i][j];
				matrix[i][j] = matrix[i][n - 1 - j];
				matrix[i][n - 1 - j] = tmp;
			}
		}
		for (int j = 0; j < n; j++) {
			for (int i = 0; i < m / 2; i++) {
				double tmp = matrix[i][j];
				matrix[i][j] = matrix[m - 1 - i][j];
				matrix[m - 1 - i][j] = tmp;
			}
		}
		return matrix;
	}// Of rot180

	private static Random myRandom = new Random(2);

	/**
	 *********************** 
	 * Generate a random matrix with the given size. Each value takes value in
	 * [-0.005, 0.095].
	 *********************** 
	 */
	public static double[][] randomMatrix(int x, int y, boolean b) {
		double[][] matrix = new double[x][y];
		// int tag = 1;
		for (int i = 0; i < x; i++) {
			for (int j = 0; j < y; j++) {
				matrix[i][j] = (myRandom.nextDouble() - 0.05) / 10;
			} // Of for j
		} // Of for i
		return matrix;
	}// Of randomMatrix

	/**
	 *********************** 
	 * Generate a random array with the given length. Each value takes value in
	 * [-0.005, 0.095].
	 *********************** 
	 */
	public static double[] randomArray(int len) {
		double[] data = new double[len];
		for (int i = 0; i < len; i++) {
			//data[i] = myRandom.nextDouble() / 10 - 0.05;
			data[i] = 0;
		} // Of for i
		return data;
	}// Of randomArray

	/**
	 *********************** 
	 * Generate a random perm with the batch size.
	 *********************** 
	 */
	public static int[] randomPerm(int size, int batchSize) {
		Set set = new HashSet();
		while (set.size() < batchSize) {
			set.add(myRandom.nextInt(size));
		}
		int[] randPerm = new int[batchSize];
		int i = 0;
		for (Integer value : set)
			randPerm[i++] = value;
		return randPerm;
	}// Of randomPerm

	/**
	 *********************** 
	 * Clone a matrix. Do not use it reference directly.
	 *********************** 
	 */
	public static double[][] cloneMatrix(final double[][] matrix) {
		final int m = matrix.length;
		int n = matrix[0].length;
		final double[][] outMatrix = new double[m][n];

		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				outMatrix[i][j] = matrix[i][j];
			} // Of for j
		} // Of for i
		return outMatrix;
	}// Of cloneMatrix

	/**
	 *********************** 
	 * Matrix operation with the given operator on single operand.
	 *********************** 
	 */
	public static double[][] matrixOp(final double[][] ma, Operator operator) {
		final int m = ma.length;
		int n = ma[0].length;
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				ma[i][j] = operator.process(ma[i][j]);
			} // Of for j
		} // Of for i
		return ma;
	}// Of matrixOp

	/**
	 *********************** 
	 * Matrix operation with the given operator on two operands.
	 *********************** 
	 */
	public static double[][] matrixOp(final double[][] ma, final double[][] mb,
			final Operator operatorA, final Operator operatorB, OperatorOnTwo operator) {
		final int m = ma.length;
		int n = ma[0].length;
		if (m != mb.length || n != mb[0].length)
			throw new RuntimeException("ma.length:" + ma.length + "  mb.length:" + mb.length);

		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				double a = ma[i][j];
				if (operatorA != null)
					a = operatorA.process(a);
				double b = mb[i][j];
				if (operatorB != null)
					b = operatorB.process(b);
				mb[i][j] = operator.process(a, b);
			} // Of for j
		} // Of for i
		return mb;
	}// Of matrixOp

	/**
	 *********************** 
	 * Extend the matrix to a bigger one (a number of times).
	 *********************** 
	 */
	public static double[][] kronecker(final double[][] matrix, final Size scale) {
		final int m = matrix.length;
		int n = matrix[0].length;
		final double[][] outMatrix = new double[m * scale.width][n * scale.height];

		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				for (int ki = i * scale.width; ki < (i + 1) * scale.width; ki++) {
					for (int kj = j * scale.height; kj < (j + 1) * scale.height; kj++) {
						outMatrix[ki][kj] = matrix[i][j];
					}
				}
			}
		}
		return outMatrix;
	}// Of kronecker

	/**
	 *********************** 
	 * Scale the matrix.
	 *********************** 
	 */
	public static double[][] scaleMatrix(final double[][] matrix, final Size scale) {
		int m = matrix.length;
		int n = matrix[0].length;
		final int sm = m / scale.width;
		final int sn = n / scale.height;
		final double[][] outMatrix = new double[sm][sn];
		if (sm * scale.width != m || sn * scale.height != n)
			throw new RuntimeException("scale matrix");
		final int size = scale.width * scale.height;
		for (int i = 0; i < sm; i++) {
			for (int j = 0; j < sn; j++) {
				double sum = 0.0;
				for (int si = i * scale.width; si < (i + 1) * scale.width; si++) {
					for (int sj = j * scale.height; sj < (j + 1) * scale.height; sj++) {
						sum += matrix[si][sj];
					} // Of for sj
				} // Of for si
				outMatrix[i][j] = sum / size;
			} // Of for j
		} // Of for i
		return outMatrix;
	}// Of scaleMatrix

	/**
	 *********************** 
	 * Convolution full to obtain a bigger size. It is used in back-propagation.
	 *********************** 
	 */
	public static double[][] convnFull(double[][] matrix, final double[][] kernel) {
		int m = matrix.length;
		int n = matrix[0].length;
		final int km = kernel.length;
		final int kn = kernel[0].length;
		final double[][] extendMatrix = new double[m + 2 * (km - 1)][n + 2 * (kn - 1)];
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				extendMatrix[i + km - 1][j + kn - 1] = matrix[i][j];
			} // Of for j
		} // Of for i
		return convnValid(extendMatrix, kernel);
	}// Of convnFull

	/**
	 *********************** 
	 * Convolution operation, from a given matrix and a kernel, sliding and sum
	 * to obtain the result matrix. It is used in forward.
	 *********************** 
	 */
	public static double[][] convnValid(final double[][] matrix, double[][] kernel) {
		// kernel = rot180(kernel);
		int m = matrix.length;
		int n = matrix[0].length;
		final int km = kernel.length;
		final int kn = kernel[0].length;
		int kns = n - kn + 1;
		final int kms = m - km + 1;
		final double[][] outMatrix = new double[kms][kns];

		for (int i = 0; i < kms; i++) {
			for (int j = 0; j < kns; j++) {
				double sum = 0.0;
				for (int ki = 0; ki < km; ki++) {
					for (int kj = 0; kj < kn; kj++)
						sum += matrix[i + ki][j + kj] * kernel[ki][kj];
				}
				outMatrix[i][j] = sum;

			}
		}
		return outMatrix;
	}// Of convnValid

	/**
	 *********************** 
	 * Convolution on a tensor.
	 *********************** 
	 */
	public static double[][] convnValid(final double[][][][] matrix, int mapNoX,
			double[][][][] kernel, int mapNoY) {
		int m = matrix.length;
		int n = matrix[0][mapNoX].length;
		int h = matrix[0][mapNoX][0].length;
		int km = kernel.length;
		int kn = kernel[0][mapNoY].length;
		int kh = kernel[0][mapNoY][0].length;
		int kms = m - km + 1;
		int kns = n - kn + 1;
		int khs = h - kh + 1;
		if (matrix.length != kernel.length)
			throw new RuntimeException("length");
		final double[][][] outMatrix = new double[kms][kns][khs];
		for (int i = 0; i < kms; i++) {
			for (int j = 0; j < kns; j++)
				for (int k = 0; k < khs; k++) {
					double sum = 0.0;
					for (int ki = 0; ki < km; ki++) {
						for (int kj = 0; kj < kn; kj++)
							for (int kk = 0; kk < kh; kk++) {
								sum += matrix[i + ki][mapNoX][j + kj][k + kk]
										* kernel[ki][mapNoY][kj][kk];
							}
					}
					outMatrix[i][j][k] = sum;
				}
		}
		return outMatrix[0];
	}// Of convnValid

	/**
	 *********************** 
	 * The sigmod operation.
	 *********************** 
	 */
	public static double sigmod(double x) {
		return 1 / (1 + Math.pow(Math.E, -x));
	}// Of sigmod

	/**
	 *********************** 
	 * Sum all values of a matrix.
	 *********************** 
	 */
	public static double sum(double[][] error) {
		int m = error.length;
		int n = error[0].length;
		double sum = 0.0;
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				sum += error[i][j];
			}
		}
		return sum;
	}// Of sum

	/**
	 *********************** 
	 * Ad hoc sum.
	 *********************** 
	 */
	public static double[][] sum(double[][][][] errors, int j) {
		int m = errors[0][j].length;
		int n = errors[0][j][0].length;
		double[][] result = new double[m][n];
		for (int mi = 0; mi < m; mi++) {
			for (int nj = 0; nj < n; nj++) {
				double sum = 0;
				for (int i = 0; i < errors.length; i++)
					sum += errors[i][j][mi][nj];
				result[mi][nj] = sum;
			}
		}
		return result;
	}// Of sum

	/**
	 *********************** 
	 * Get the index of the maximal value for the final classification.
	 *********************** 
	 */
	public static int getMaxIndex(double[] out) {
		double max = out[0];
		int index = 0;
		for (int i = 1; i < out.length; i++)
			if (out[i] > max) {
				max = out[i];
				index = i;
			}
		return index;
	}// Of getMaxIndex
}// Of MathUtils

第 83 天: 数学操作 (续)

昨天的操作比较多, 今天可以自己写些代码来测试下. 例如, 测试用例最好是 8*8 之内的矩阵, 这样比较容易验证正确性.

第 84 天: 网络结构与参数

先看单层的数据.

  1. 对于多维数组, 需要理解每个维度的意义.
  2. 不同类型的层, 初始化操作不同.
  3. 与 ANN 的代码风格不同, 主要操作并未在这里写. 原因在于: 这些操作可能涉及到前一层或后一层的数据. 当然, 如果你愿意, 也可以把主要操作的代码移到本类, 调拭的工作量应该比较大.
package machinelearning.cnn;

/**
 * One layer, support all four layer types. The code mainly initializes, gets,
 * and sets variables. Essentially no algorithm is implemented.
 *
 * @author Fan Min [email protected].
 */
public class CnnLayer {
	/**
	 * The type of the layer.
	 */
	LayerTypeEnum type;

	/**
	 * The number of out map.
	 */
	int outMapNum;

	/**
	 * The map size.
	 */
	Size mapSize;

	/**
	 * The kernel size.
	 */
	Size kernelSize;

	/**
	 * The scale size.
	 */
	Size scaleSize;

	/**
	 * The index of the class (label) attribute.
	 */
	int classNum = -1;

	/**
	 * Kernel. Dimensions: [front map][out map][width][height].
	 */
	private double[][][][] kernel;

	/**
	 * Bias. The length is outMapNum.
	 */
	private double[] bias;

	/**
	 * Out maps. Dimensions:
	 * [batchSize][outMapNum][mapSize.width][mapSize.height].
	 */
	private double[][][][] outMaps;

	/**
	 * Errors.
	 */
	private double[][][][] errors;

	/**
	 * For batch processing.
	 */
	private static int recordInBatch = 0;

	/**
	 *********************** 
	 * The first constructor.
	 * 
	 * @param paraNum
	 *            When the type is CONVOLUTION, it is the out map number. when
	 *            the type is OUTPUT, it is the class number.
	 * @param paraSize
	 *            When the type is INPUT, it is the map size; when the type is
	 *            CONVOLUTION, it is the kernel size; when the type is SAMPLING,
	 *            it is the scale size.
	 *********************** 
	 */
	public CnnLayer(LayerTypeEnum paraType, int paraNum, Size paraSize) {
		type = paraType;
		switch (type) {
		case INPUT:
			outMapNum = 1;
			mapSize = paraSize; // No deep copy.
			break;
		case CONVOLUTION:
			outMapNum = paraNum;
			kernelSize = paraSize;
			break;
		case SAMPLING:
			scaleSize = paraSize;
			break;
		case OUTPUT:
			classNum = paraNum;
			mapSize = new Size(1, 1);
			outMapNum = classNum;
			break;
		default:
			System.out.println("Internal error occurred in AbstractLayer.java constructor.");
		}// Of switch
	}// Of the first constructor

	/**
	 *********************** 
	 * Initialize the kernel.
	 * 
	 * @param paraNum
	 *            When the type is CONVOLUTION, it is the out map number. when
	 *********************** 
	 */
	public void initKernel(int paraFrontMapNum) {
		kernel = new double[paraFrontMapNum][outMapNum][][];
		for (int i = 0; i < paraFrontMapNum; i++) {
			for (int j = 0; j < outMapNum; j++) {
				kernel[i][j] = MathUtils.randomMatrix(kernelSize.width, kernelSize.height, true);
			} // Of for j
		} // Of for i
	}// Of initKernel

	/**
	 *********************** 
	 * Initialize the output kernel. The code is revised to invoke
	 * initKernel(int).
	 *********************** 
	 */
	public void initOutputKernel(int paraFrontMapNum, Size paraSize) {
		kernelSize = paraSize;
		initKernel(paraFrontMapNum);
	}// Of initOutputKernel

	/**
	 *********************** 
	 * Initialize the bias. No parameter. "int frontMapNum" is claimed however
	 * not used.
	 *********************** 
	 */
	public void initBias() {
		bias = MathUtils.randomArray(outMapNum);
	}// Of initBias

	/**
	 *********************** 
	 * Initialize the errors.
	 * 
	 * @param paraBatchSize
	 *            The batch size.
	 *********************** 
	 */
	public void initErrors(int paraBatchSize) {
		errors = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];
	}// Of initErrors

	/**
	 *********************** 
	 * Initialize out maps.
	 * 
	 * @param paraBatchSize
	 *            The batch size.
	 *********************** 
	 */
	public void initOutMaps(int paraBatchSize) {
		outMaps = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];
	}// Of initOutMaps

	/**
	 *********************** 
	 * Prepare for a new batch.
	 *********************** 
	 */
	public static void prepareForNewBatch() {
		recordInBatch = 0;
	}// Of prepareForNewBatch

	/**
	 *********************** 
	 * Prepare for a new record.
	 *********************** 
	 */
	public static void prepareForNewRecord() {
		recordInBatch++;
	}// Of prepareForNewRecord

	/**
	 *********************** 
	 * Set one value of outMaps.
	 *********************** 
	 */
	public void setMapValue(int paraMapNo, int paraX, int paraY, double paraValue) {
		outMaps[recordInBatch][paraMapNo][paraX][paraY] = paraValue;
	}// Of setMapValue

	/**
	 *********************** 
	 * Set values of the whole map.
	 *********************** 
	 */
	public void setMapValue(int paraMapNo, double[][] paraOutMatrix) {
		outMaps[recordInBatch][paraMapNo] = paraOutMatrix;
	}// Of setMapValue

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public Size getMapSize() {
		return mapSize;
	}// Of getMapSize

	/**
	 *********************** 
	 * Setter.
	 *********************** 
	 */
	public void setMapSize(Size paraMapSize) {
		mapSize = paraMapSize;
	}// Of setMapSize

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public LayerTypeEnum getType() {
		return type;
	}// Of getType

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public int getOutMapNum() {
		return outMapNum;
	}// Of getOutMapNum

	/**
	 *********************** 
	 * Setter.
	 *********************** 
	 */
	public void setOutMapNum(int paraOutMapNum) {
		outMapNum = paraOutMapNum;
	}// Of setOutMapNum

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public Size getKernelSize() {
		return kernelSize;
	}// Of getKernelSize

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public Size getScaleSize() {
		return scaleSize;
	}// Of getScaleSize

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[][] getMap(int paraIndex) {
		return outMaps[recordInBatch][paraIndex];
	}// Of getMap

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[][] getKernel(int paraFrontMap, int paraOutMap) {
		return kernel[paraFrontMap][paraOutMap];
	}// Of getKernel

	/**
	 *********************** 
	 * Setter. Set one error.
	 *********************** 
	 */
	public void setError(int paraMapNo, int paraMapX, int paraMapY, double paraValue) {
		errors[recordInBatch][paraMapNo][paraMapX][paraMapY] = paraValue;
	}// Of setError

	/**
	 *********************** 
	 * Setter. Set one error matrix.
	 *********************** 
	 */
	public void setError(int paraMapNo, double[][] paraMatrix) {
		errors[recordInBatch][paraMapNo] = paraMatrix;
	}// Of setError

	/**
	 *********************** 
	 * Getter. Get one error matrix.
	 *********************** 
	 */
	public double[][] getError(int paraMapNo) {
		return errors[recordInBatch][paraMapNo];
	}// Of getError

	/**
	 *********************** 
	 * Getter. Get the whole error tensor.
	 *********************** 
	 */
	public double[][][][] getErrors() {
		return errors;
	}// Of getErrors

	/**
	 *********************** 
	 * Setter. Set one kernel.
	 *********************** 
	 */
	public void setKernel(int paraLastMapNo, int paraMapNo, double[][] paraKernel) {
		kernel[paraLastMapNo][paraMapNo] = paraKernel;
	}// Of setKernel

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double getBias(int paraMapNo) {
		return bias[paraMapNo];
	}// Of getBias

	/**
	 *********************** 
	 * Setter.
	 *********************** 
	 */
	public void setBias(int paraMapNo, double paraValue) {
		bias[paraMapNo] = paraValue;
	}// Of setBias

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[][][][] getMaps() {
		return outMaps;
	}// Of getMaps

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[][] getError(int paraRecordId, int paraMapNo) {
		return errors[paraRecordId][paraMapNo];
	}// Of getError

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public double[][] getMap(int paraRecordId, int paraMapNo) {
		return outMaps[paraRecordId][paraMapNo];
	}// Of getMap

	/**
	 *********************** 
	 * Getter.
	 *********************** 
	 */
	public int getClassNum() {
		return classNum;
	}// Of getClassNum

	/**
	 *********************** 
	 * Getter. Get the whole kernel tensor.
	 *********************** 
	 */
	public double[][][][] getKernel() {
		return kernel;
	} // Of getKernel
}// Of class CnnLayer

然后是多层管理

package machinelearning.cnn;

import java.util.ArrayList;
import java.util.List;

/**
 * CnnLayer builder. 
 * 
 * @author Fan Min [email protected].
 */
public class LayerBuilder {
	/**
	 * Layers.
	 */
	private List layers;

	/**
	 *********************** 
	 * The first constructor.
	 *********************** 
	 */
	public LayerBuilder() {
		layers = new ArrayList();
	}// Of the first constructor

	/**
	 *********************** 
	 * The second constructor.
	 *********************** 
	 */
	public LayerBuilder(CnnLayer paraLayer) {
		this();
		layers.add(paraLayer);
	}// Of the second constructor

	/**
	 *********************** 
	 * Add a layer.
	 * 
	 * @param paraLayer
	 *            The new layer.
	 *********************** 
	 */
	public void addLayer(CnnLayer paraLayer) {
		layers.add(paraLayer);
	}// Of addLayer
	
	/**
	 *********************** 
	 * Get the specified layer.
	 * 
	 * @param paraIndex
	 *            The index of the layer.
	 *********************** 
	 */
	public CnnLayer getLayer(int paraIndex) throws RuntimeException{
		if (paraIndex >= layers.size()) {
			throw new RuntimeException("CnnLayer " + paraIndex + " is out of range: "
					+ layers.size() + ".");
		}//Of if
		
		return layers.get(paraIndex);
	}//Of getLayer
	
	/**
	 *********************** 
	 * Get the output layer.
	 *********************** 
	 */
	public CnnLayer getOutputLayer() {
		return layers.get(layers.size() - 1);
	}//Of getOutputLayer

	/**
	 *********************** 
	 * Get the number of layers.
	 *********************** 
	 */
	public int getNumLayers() {
		return layers.size();
	}//Of getNumLayers
}// Of class LayerBuilder

第 85 天: 网络构建 (1. 代码抄写)

代码有点多, 先抄写一遍, 并尽量理解一些.

  1. initOperators 又初始化若干的算子. 注意到它们与已经初始化的成员变量有关. 这种灵活的方式 (interface) 还是值得学习的.
  2. ALPHA 和 LAMBDA 是超参数, 可以自己设置.
  3. setup 进行整个网络的初始化.
  4. forward 和 backPropagation 与 ANN 同理, 但运算不同了.
  5. 一批数据进行 forward 和 backPropagation 后, 才进行一次 updateParameters.
  6. rangeCheck 是我调拭时写的, 现在没啥用了.
package machinelearning.cnn;

import java.util.Arrays;
import machinelearning.cnn.Dataset.Instance;
import machinelearning.cnn.MathUtils.Operator;

/**
 * CNN.
 * 
 * @author Fan Min [email protected].
 */
public class FullCnn {
	/**
	 * The value changes.
	 */
	private static double ALPHA = 0.85;

	/**
	 * A constant.
	 */
	public static double LAMBDA = 0;

	/**
	 * Manage layers.
	 */
	private static LayerBuilder layerBuilder;

	/**
	 * Train using a number of instances simultaneously.
	 */
	private int batchSize;

	/**
	 * Divide the batch size with the given value.
	 */
	private Operator divideBatchSize;

	/**
	 * Multiply alpha with the given value.
	 */
	private Operator multiplyAlpha;

	/**
	 * Multiply lambda and alpha with the given value.
	 */
	private Operator multiplyLambda;

	/**
	 *********************** 
	 * The first constructor.
	 * 
	 *********************** 
	 */
	public FullCnn(LayerBuilder paraLayerBuilder, int paraBatchSize) {
		layerBuilder = paraLayerBuilder;
		batchSize = paraBatchSize;
		setup();
		initOperators();
	}// Of the first constructor

	/**
	 *********************** 
	 * Initialize operators using temporary classes.
	 *********************** 
	 */
	private void initOperators() {
		divideBatchSize = new Operator() {
			private static final long serialVersionUID = 7424011281732651055L;

			@Override
			public double process(double value) {
				return value / batchSize;
			}// Of process
		};

		multiplyAlpha = new Operator() {
			private static final long serialVersionUID = 5761368499808006552L;

			@Override
			public double process(double value) {
				return value * ALPHA;
			}// Of process
		};

		multiplyLambda = new Operator() {
			private static final long serialVersionUID = 4499087728362870577L;

			@Override
			public double process(double value) {
				return value * (1 - LAMBDA * ALPHA);
			}// Of process
		};
	}// Of initOperators

	/**
	 *********************** 
	 * Setup according to the layer builder.
	 *********************** 
	 */
	public void setup() {
		CnnLayer tempInputLayer = layerBuilder.getLayer(0);
		tempInputLayer.initOutMaps(batchSize);

		for (int i = 1; i < layerBuilder.getNumLayers(); i++) {
			CnnLayer tempLayer = layerBuilder.getLayer(i);
			CnnLayer tempFrontLayer = layerBuilder.getLayer(i - 1);
			int tempFrontMapNum = tempFrontLayer.getOutMapNum();
			switch (tempLayer.getType()) {
			case INPUT:
				// Should not be input. Maybe an error should be thrown out.
				break;
			case CONVOLUTION:
				tempLayer.setMapSize(
						tempFrontLayer.getMapSize().subtract(tempLayer.getKernelSize(), 1));
				tempLayer.initKernel(tempFrontMapNum);
				tempLayer.initBias();
				tempLayer.initErrors(batchSize);
				tempLayer.initOutMaps(batchSize);
				break;
			case SAMPLING:
				tempLayer.setOutMapNum(tempFrontMapNum);
				tempLayer.setMapSize(tempFrontLayer.getMapSize().divide(tempLayer.getScaleSize()));
				tempLayer.initErrors(batchSize);
				tempLayer.initOutMaps(batchSize);
				break;
			case OUTPUT:
				tempLayer.initOutputKernel(tempFrontMapNum, tempFrontLayer.getMapSize());
				tempLayer.initBias();
				tempLayer.initErrors(batchSize);
				tempLayer.initOutMaps(batchSize);
				break;
			}// Of switch
		} // Of for i
	}// Of setup

	/**
	 *********************** 
	 * Forward computing.
	 *********************** 
	 */
	private void forward(Instance instance) {
		setInputLayerOutput(instance);
		for (int l = 1; l < layerBuilder.getNumLayers(); l++) {
			CnnLayer tempCurrentLayer = layerBuilder.getLayer(l);
			CnnLayer tempLastLayer = layerBuilder.getLayer(l - 1);
			switch (tempCurrentLayer.getType()) {
			case CONVOLUTION:
				setConvolutionOutput(tempCurrentLayer, tempLastLayer);
				break;
			case SAMPLING:
				setSampOutput(tempCurrentLayer, tempLastLayer);
				break;
			case OUTPUT:
				setConvolutionOutput(tempCurrentLayer, tempLastLayer);
				break;
			default:
				break;
			}// Of switch
		} // Of for l
	}// Of forward

	/**
	 *********************** 
	 * Set the in layer output. Given a record, copy its values to the input
	 * map.
	 *********************** 
	 */
	private void setInputLayerOutput(Instance paraRecord) {
		CnnLayer tempInputLayer = layerBuilder.getLayer(0);
		Size tempMapSize = tempInputLayer.getMapSize();
		double[] tempAttributes = paraRecord.getAttributes();
		if (tempAttributes.length != tempMapSize.width * tempMapSize.height)
			throw new RuntimeException("input record does not match the map size.");

		for (int i = 0; i < tempMapSize.width; i++) {
			for (int j = 0; j < tempMapSize.height; j++) {
				tempInputLayer.setMapValue(0, i, j, tempAttributes[tempMapSize.height * i + j]);
			} // Of for j
		} // Of for i
	}// Of setInputLayerOutput

	/**
	 *********************** 
	 * Compute the convolution output according to the output of the last layer.
	 * 
	 * @param paraLastLayer
	 *            the last layer.
	 * @param paraLayer
	 *            the current layer.
	 *********************** 
	 */
	private void setConvolutionOutput(final CnnLayer paraLayer, final CnnLayer paraLastLayer) {
		// int mapNum = paraLayer.getOutMapNum();
		final int lastMapNum = paraLastLayer.getOutMapNum();

		// Attention: paraLayer.getOutMapNum() may not be right.
		for (int j = 0; j < paraLayer.getOutMapNum(); j++) {
			double[][] tempSumMatrix = null;
			for (int i = 0; i < lastMapNum; i++) {
				double[][] lastMap = paraLastLayer.getMap(i);
				double[][] kernel = paraLayer.getKernel(i, j);
				if (tempSumMatrix == null) {
					// On the first map.
					tempSumMatrix = MathUtils.convnValid(lastMap, kernel);
				} else {
					// Sum up convolution maps
					tempSumMatrix = MathUtils.matrixOp(MathUtils.convnValid(lastMap, kernel),
							tempSumMatrix, null, null, MathUtils.plus);
				} // Of if
			} // Of for i

			// Activation.
			final double bias = paraLayer.getBias(j);
			tempSumMatrix = MathUtils.matrixOp(tempSumMatrix, new Operator() {
				private static final long serialVersionUID = 2469461972825890810L;

				@Override
				public double process(double value) {
					return MathUtils.sigmod(value + bias);
				}

			});

			paraLayer.setMapValue(j, tempSumMatrix);
		} // Of for j
	}// Of setConvolutionOutput

	/**
	 *********************** 
	 * Compute the convolution output according to the output of the last layer.
	 * 
	 * @param paraLastLayer
	 *            the last layer.
	 * @param paraLayer
	 *            the current layer.
	 *********************** 
	 */
	private void setSampOutput(final CnnLayer paraLayer, final CnnLayer paraLastLayer) {
		// int tempLastMapNum = paraLastLayer.getOutMapNum();

		// Attention: paraLayer.outMapNum may not be right.
		for (int i = 0; i < paraLayer.outMapNum; i++) {
			double[][] lastMap = paraLastLayer.getMap(i);
			Size scaleSize = paraLayer.getScaleSize();
			double[][] sampMatrix = MathUtils.scaleMatrix(lastMap, scaleSize);
			paraLayer.setMapValue(i, sampMatrix);
		} // Of for i
	}// Of setSampOutput

	/**
	 *********************** 
	 * Train the cnn.
	 *********************** 
	 */
	public void train(Dataset paraDataset, int paraRounds) {
		for (int t = 0; t < paraRounds; t++) {
			System.out.println("Iteration: " + t);
			int tempNumEpochs = paraDataset.size() / batchSize;
			if (paraDataset.size() % batchSize != 0)
				tempNumEpochs++;
			// logger.info("第{}次迭代,epochsNum: {}", t, epochsNum);
			double tempNumCorrect = 0;
			int tempCount = 0;
			for (int i = 0; i < tempNumEpochs; i++) {
				int[] tempRandomPerm = MathUtils.randomPerm(paraDataset.size(), batchSize);
				CnnLayer.prepareForNewBatch();

				for (int index : tempRandomPerm) {
					boolean isRight = train(paraDataset.getInstance(index));
					if (isRight)
						tempNumCorrect++;
					tempCount++;
					CnnLayer.prepareForNewRecord();
				} // Of for index

				updateParameters();
				if (i % 50 == 0) {
					System.out.print("..");
					if (i + 50 > tempNumEpochs)
						System.out.println();
				}
			}
			double p = 1.0 * tempNumCorrect / tempCount;
			if (t % 10 == 1 && p > 0.96) {
				ALPHA = 0.001 + ALPHA * 0.9;
				// logger.info("设置 alpha = {}", ALPHA);
			} // Of iff
			System.out.println("Training precision: " + p);
			// logger.info("计算精度: {}/{}={}.", right, count, p);
		} // Of for i
	}// Of train

	/**
	 *********************** 
	 * Train the cnn with only one record.
	 * 
	 * @param paraRecord
	 *            The given record.
	 *********************** 
	 */
	private boolean train(Instance paraRecord) {
		forward(paraRecord);
		boolean result = backPropagation(paraRecord);
		return result;
	}// Of train

	/**
	 *********************** 
	 * Back-propagation.
	 * 
	 * @param paraRecord
	 *            The given record.
	 *********************** 
	 */
	private boolean backPropagation(Instance paraRecord) {
		boolean result = setOutputLayerErrors(paraRecord);
		setHiddenLayerErrors();
		return result;
	}// Of backPropagation

	/**
	 *********************** 
	 * Update parameters.
	 *********************** 
	 */
	private void updateParameters() {
		for (int l = 1; l < layerBuilder.getNumLayers(); l++) {
			CnnLayer layer = layerBuilder.getLayer(l);
			CnnLayer lastLayer = layerBuilder.getLayer(l - 1);
			switch (layer.getType()) {
			case CONVOLUTION:
			case OUTPUT:
				updateKernels(layer, lastLayer);
				updateBias(layer, lastLayer);
				break;
			default:
				break;
			}// Of switch
		} // Of for l
	}// Of updateParameters

	/**
	 *********************** 
	 * Update bias.
	 *********************** 
	 */
	private void updateBias(final CnnLayer paraLayer, CnnLayer paraLastLayer) {
		final double[][][][] errors = paraLayer.getErrors();
		// int mapNum = paraLayer.getOutMapNum();

		// Attention: getOutMapNum() may not be correct.
		for (int j = 0; j < paraLayer.getOutMapNum(); j++) {
			double[][] error = MathUtils.sum(errors, j);
			double deltaBias = MathUtils.sum(error) / batchSize;
			double bias = paraLayer.getBias(j) + ALPHA * deltaBias;
			paraLayer.setBias(j, bias);
		} // Of for j
	}// Of updateBias

	/**
	 *********************** 
	 * Update kernels.
	 *********************** 
	 */
	private void updateKernels(final CnnLayer paraLayer, final CnnLayer paraLastLayer) {
		// int mapNum = paraLayer.getOutMapNum();
		int tempLastMapNum = paraLastLayer.getOutMapNum();

		// Attention: getOutMapNum() may not be right
		for (int j = 0; j < paraLayer.getOutMapNum(); j++) {
			for (int i = 0; i < tempLastMapNum; i++) {
				double[][] tempDeltaKernel = null;
				for (int r = 0; r < batchSize; r++) {
					double[][] error = paraLayer.getError(r, j);
					if (tempDeltaKernel == null)
						tempDeltaKernel = MathUtils.convnValid(paraLastLayer.getMap(r, i), error);
					else {
						tempDeltaKernel = MathUtils.matrixOp(
								MathUtils.convnValid(paraLastLayer.getMap(r, i), error),
								tempDeltaKernel, null, null, MathUtils.plus);
					} // Of if
				} // Of for r

				tempDeltaKernel = MathUtils.matrixOp(tempDeltaKernel, divideBatchSize);
				if (!rangeCheck(tempDeltaKernel, -10, 10)) {
					System.exit(0);
				} // Of if
				double[][] kernel = paraLayer.getKernel(i, j);
				tempDeltaKernel = MathUtils.matrixOp(kernel, tempDeltaKernel, multiplyLambda,
						multiplyAlpha, MathUtils.plus);
				paraLayer.setKernel(i, j, tempDeltaKernel);
			} // Of for i
		} // Of for j
	}// Of updateKernels

	/**
	 *********************** 
	 * Set errors of all hidden layers.
	 *********************** 
	 */
	private void setHiddenLayerErrors() {
		// System.out.println("setHiddenLayerErrors");
		for (int l = layerBuilder.getNumLayers() - 2; l > 0; l--) {
			CnnLayer layer = layerBuilder.getLayer(l);
			CnnLayer nextLayer = layerBuilder.getLayer(l + 1);
			// System.out.println("layertype = " + layer.getType());
			switch (layer.getType()) {
			case SAMPLING:
				setSamplingErrors(layer, nextLayer);
				break;
			case CONVOLUTION:
				setConvolutionErrors(layer, nextLayer);
				break;
			default:
				break;
			}// Of switch
		} // Of for l
	}// Of setHiddenLayerErrors

	/**
	 *********************** 
	 * Set errors of a sampling layer.
	 *********************** 
	 */
	private void setSamplingErrors(final CnnLayer paraLayer, final CnnLayer paraNextLayer) {
		// int mapNum = layer.getOutMapNum();
		int tempNextMapNum = paraNextLayer.getOutMapNum();
		// Attention: getOutMapNum() may not be correct
		for (int i = 0; i < paraLayer.getOutMapNum(); i++) {
			double[][] sum = null;
			for (int j = 0; j < tempNextMapNum; j++) {
				double[][] nextError = paraNextLayer.getError(j);
				double[][] kernel = paraNextLayer.getKernel(i, j);
				if (sum == null) {
					sum = MathUtils.convnFull(nextError, MathUtils.rot180(kernel));
				} else {
					sum = MathUtils.matrixOp(
							MathUtils.convnFull(nextError, MathUtils.rot180(kernel)), sum, null,
							null, MathUtils.plus);
				} // Of if
			} // Of for j
			paraLayer.setError(i, sum);

			if (!rangeCheck(sum, -2, 2)) {
				System.out.println(
						"setSampErrors, error out of range.\r\n" + Arrays.deepToString(sum));
			} // Of if
		} // Of for i
	}// Of setSamplingErrors

	/**
	 *********************** 
	 * Set errors of a sampling layer.
	 *********************** 
	 */
	private void setConvolutionErrors(final CnnLayer paraLayer, final CnnLayer paraNextLayer) {
		// System.out.println("setConvErrors");
		for (int m = 0; m < paraLayer.getOutMapNum(); m++) {
			Size tempScale = paraNextLayer.getScaleSize();
			double[][] tempNextLayerErrors = paraNextLayer.getError(m);
			double[][] tempMap = paraLayer.getMap(m);
			double[][] tempOutMatrix = MathUtils.matrixOp(tempMap, MathUtils.cloneMatrix(tempMap),
					null, MathUtils.one_value, MathUtils.multiply);
			tempOutMatrix = MathUtils.matrixOp(tempOutMatrix,
					MathUtils.kronecker(tempNextLayerErrors, tempScale), null, null,
					MathUtils.multiply);
			paraLayer.setError(m, tempOutMatrix);

			// System.out.println("range check nextError");
			if (!rangeCheck(tempNextLayerErrors, -10, 10)) {
				System.out.println("setConvErrors, nextError out of range:\r\n"
						+ Arrays.deepToString(tempNextLayerErrors));
				System.out.println("the new errors are:\r\n" + Arrays.deepToString(tempOutMatrix));

				System.exit(0);
			} // Of if

			if (!rangeCheck(tempOutMatrix, -10, 10)) {
				System.out.println("setConvErrors, error out of range.");
				System.exit(0);
			} // Of if
		} // Of for m
	}// Of setConvolutionErrors

	/**
	 *********************** 
	 * Set errors of a sampling layer.
	 *********************** 
	 */
	private boolean setOutputLayerErrors(Instance paraRecord) {
		CnnLayer tempOutputLayer = layerBuilder.getOutputLayer();
		int tempMapNum = tempOutputLayer.getOutMapNum();

		double[] tempTarget = new double[tempMapNum];
		double[] tempOutMaps = new double[tempMapNum];
		for (int m = 0; m < tempMapNum; m++) {
			double[][] outmap = tempOutputLayer.getMap(m);
			tempOutMaps[m] = outmap[0][0];
		} // Of for m

		int tempLabel = paraRecord.getLabel().intValue();
		tempTarget[tempLabel] = 1;
		// Log.i(record.getLable() + "outmaps:" +
		// Util.fomart(outmaps)
		// + Arrays.toString(target));
		for (int m = 0; m < tempMapNum; m++) {
			tempOutputLayer.setError(m, 0, 0,
					tempOutMaps[m] * (1 - tempOutMaps[m]) * (tempTarget[m] - tempOutMaps[m]));
		} // Of for m

		return tempLabel == MathUtils.getMaxIndex(tempOutMaps);
	}// Of setOutputLayerErrors

	/**
	 *********************** 
	 * Setup the network.
	 *********************** 
	 */
	public void setup(int paraBatchSize) {
		CnnLayer tempInputLayer = layerBuilder.getLayer(0);
		tempInputLayer.initOutMaps(paraBatchSize);

		for (int i = 1; i < layerBuilder.getNumLayers(); i++) {
			CnnLayer tempLayer = layerBuilder.getLayer(i);
			CnnLayer tempLastLayer = layerBuilder.getLayer(i - 1);
			int tempLastMapNum = tempLastLayer.getOutMapNum();
			switch (tempLayer.getType()) {
			case INPUT:
				break;
			case CONVOLUTION:
				tempLayer.setMapSize(
						tempLastLayer.getMapSize().subtract(tempLayer.getKernelSize(), 1));
				tempLayer.initKernel(tempLastMapNum);
				tempLayer.initBias();
				tempLayer.initErrors(paraBatchSize);
				tempLayer.initOutMaps(paraBatchSize);
				break;
			case SAMPLING:
				tempLayer.setOutMapNum(tempLastMapNum);
				tempLayer.setMapSize(tempLastLayer.getMapSize().divide(tempLayer.getScaleSize()));
				tempLayer.initErrors(paraBatchSize);
				tempLayer.initOutMaps(paraBatchSize);
				break;
			case OUTPUT:
				tempLayer.initOutputKernel(tempLastMapNum, tempLastLayer.getMapSize());
				tempLayer.initBias();
				tempLayer.initErrors(paraBatchSize);
				tempLayer.initOutMaps(paraBatchSize);
				break;
			}// Of switch
		} // Of for i
	}// Of setup

	/**
	 *********************** 
	 * Predict for the dataset.
	 *********************** 
	 */
	public int[] predict(Dataset paraDataset) {
		System.out.println("Predicting ... ");
		CnnLayer.prepareForNewBatch();

		int[] resultPredictions = new int[paraDataset.size()];
		double tempCorrect = 0.0;

		Instance tempRecord;
		for (int i = 0; i < paraDataset.size(); i++) {
			tempRecord = paraDataset.getInstance(i);
			forward(tempRecord);
			CnnLayer outputLayer = layerBuilder.getOutputLayer();

			int tempMapNum = outputLayer.getOutMapNum();
			double[] tempOut = new double[tempMapNum];
			for (int m = 0; m < tempMapNum; m++) {
				double[][] outmap = outputLayer.getMap(m);
				tempOut[m] = outmap[0][0];
			} // Of for m

			resultPredictions[i] = MathUtils.getMaxIndex(tempOut);
			if (resultPredictions[i] == tempRecord.getLabel().intValue()) {
				tempCorrect++;
			} // Of if
		} // Of for

		System.out.println("Accuracy: " + tempCorrect / paraDataset.size());
		return resultPredictions;
	}// Of predict

	/**
	 *********************** 
	 * Range check, only for debugging.
	 * 
	 * @param paraMatix
	 *            The given matrix.
	 * @param paraLowerBound
	 * @param paraUpperBound
	 *********************** 
	 */
	public boolean rangeCheck(double[][] paraMatrix, double paraLowerBound, double paraUpperBound) {
		for (int i = 0; i < paraMatrix.length; i++) {
			for (int j = 0; j < paraMatrix[0].length; j++) {
				if ((paraMatrix[i][j] < paraLowerBound) || (paraMatrix[i][j] > paraUpperBound)) {
					System.out.println("" + paraMatrix[i][j] + " out of range (" + paraLowerBound
							+ ", " + paraUpperBound + ")\r\n");
					return false;
				} // Of if
			} // Of for j
		} // Of for i

		return true;
	}// Of rangeCheck

	/**
	 *********************** 
	 * The main entrance.
	 *********************** 
	 */
	public static void main(String[] args) {
		LayerBuilder builder = new LayerBuilder();
		// Input layer, the maps are 28*28
		builder.addLayer(new CnnLayer(LayerTypeEnum.INPUT, -1, new Size(28, 28)));
		// Convolution output has size 24*24, 24=28+1-5
		builder.addLayer(new CnnLayer(LayerTypeEnum.CONVOLUTION, 6, new Size(5, 5)));
		// Sampling output has size 12*12,12=24/2
		builder.addLayer(new CnnLayer(LayerTypeEnum.SAMPLING, -1, new Size(2, 2)));
		// Convolution output has size 8*8, 8=12+1-5
		builder.addLayer(new CnnLayer(LayerTypeEnum.CONVOLUTION, 12, new Size(5, 5)));
		// Sampling output has size4×4,4=8/2
		builder.addLayer(new CnnLayer(LayerTypeEnum.SAMPLING, -1, new Size(2, 2)));
		// output layer, digits 0 - 9.
		builder.addLayer(new CnnLayer(LayerTypeEnum.OUTPUT, 10, null));
		// Construct the full CNN.
		FullCnn tempCnn = new FullCnn(builder, 10);

		Dataset tempTrainingSet = new Dataset("d:/c/cann/data/mnist/train.format", ",", 784);

		// Train the model.
		tempCnn.train(tempTrainingSet, 10);
		// tempCnn.predict(tempTrainingSet);
	}// Of main
}// Of class MfCnn

第 86 天: 网络构建 (2. 代码理解)

CNN 的结构与 ANN 其实是一样的.

  1. 根据 main 里面的设置, 各层节点数依次是 1, 6, 6, 12, 12, 10. 这里的每个节点存储一个矩阵.
  2. 这里的 6 和 12 为超参数, 可以自己设置.
  3. 卷积层中, 每条边对应一个卷积核. 池化层不需要参数.
  4. 第一层只有 1 个节点, 是因为它为 binary 的. 如果是彩色图 (RGB), 则第一层应该有 3 个节点.
  5. 最后一层有 10 个节点, 因为 0-9 共 10 种可能的数字. 它们均为 1*1 的矩阵, 分类时通过比较哪个值最大, 确定是哪一类, 这和 ANN 也是一致的.

第 87 天: 实验

  1. 可以看出, 虽然网络不大, 但是效果不错. 用测试集效果也相当.
  2. 自己另外找一个数据集, 构建网络, 进行实验并给出结果.

第 88 天: 总结 (01 - 10 天: 基本语法)

第 89 天: 总结 (11 - 50 天: 数据结构)

第 90 天: 总结 (51 - 87 天: 机器学习)

你可能感兴趣的:(Java,程序设计基础,神经网络)