今天我来为大家安利另外一个用于绘制可视化图表的Python
框架,名叫Dash
,建立在Flask
、Plotly.js
以及React.js
的基础之上。
为了帮助前端知识匮乏的数据分析人员,Dash以纯Python
编程的方式快速制作出交互特性强的数据可视化大屏,在经过多年的迭代发展,如今不仅仅可以用来开发在线数据可视化作品,即便是轻量级的数据仪表盘、BI应用甚至是博客或者是常规的网站都随处可见Dash
框架的影子,
今天我就先来介绍一下该框架的一些基础知识,并且来制作一个简单的数据可视化大屏。 喜欢记得收藏、关注、点赞。
我们先来了解一下Dash
框架中的两个基本概念
Layout
Callbacks
Layout
顾名思义就是用来设计可视化大屏的外观和布局,添加一些例如下拉框、单选框、复选框、输入框、文本框、滑动条等组件,其中Dash
框架对HTML
标签也进行了进一步的封装,使得我们直接可以通过Python
代码来生成和设计每一个网页所需要的元素,例如
<div>
<h1>Hello World!!h1>
<div>
<p>Dash converts Python classes into HTMLp>
div>
div>
我们转化成Dash
的Python
结构就是
<div>
<h1>Hello World!!h1>
<div>
<p>Dash converts Python classes into HTMLp>
div>
div>
Callbacks
也就是回调函数,基本上是以装饰器的形式来体现的,实现前后端异步通信的交互,例如我们在点击按钮或者下拉框之后出现的功能就是通过回调函数来实现的。
在导入模块之前,我们先用pip命令来进行安装,
! pip install dash
! pip install dash-html-components
! pip install dash-core-components
! pip install plotly
然后我们导入这些刚刚安装完的模块,其中dash-html-components
用来生成HTML
标签,dash-core-components
模块用来生成例如下拉框、输入框等组件,这里我们还需要用到plotly
模块,因为我们需要用到的数据来自该模块,里面是一众互联网公司过去一段时间中股价的走势
import dash
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px
那么我们读取数据并且用plotly
来绘制折线图,代码如下
app = dash.Dash() #实例化Dash
df = px.data.stocks() #读取股票数据
def stock_prices():
# 绘制折线图
fig = go.Figure([go.Scatter(x=df['date'], y=df['AAPL'],
line=dict(color='firebrick', width=4), name='Apple')
])
fig.update_layout(title='股价随着时间的变幻',
xaxis_title='日期',
yaxis_title='价格'
)
return fig
app.layout = html.Div(id='parent', children=[
html.H1(id='H1', children='Dash 案例一', style={'textAlign': 'center',
'marginTop': 40, 'marginBottom': 40}),
dcc.Graph(id='line_plot', figure=stock_prices())
])
if __name__ == '__main__':
app.run_server()
我们点击运行之后会按照提示将url复制到浏览器当中便可以看到出来的结果了,如下所示
从代码的逻辑上来看,我们通过Dash
框架中的Div
方法来进行页面的布局,其中有参数id
来指定网页中的元素,以及style
参数来进行样式的设计,最后我们将会指出来的图表放在dcc.Graph()
函数当中。
然后我们再添置一个下拉框,当我们点击这个下拉框的时候,可是根据我们的选择展示不同公司的股价,代码如下
dcc.Dropdown(id='dropdown',
options=[
{'label': '谷歌', 'value': 'GOOG'},
{'label': '苹果', 'value': 'AAPL'},
{'label': '亚马逊', 'value': 'AMZN'},
],
value='GOOG'),
output
options
参数中的label
对应的是下拉框中的各个标签,而value
对应的是DataFrame
当中的列名
df.head()
output
最后我们将下拉框和绘制折线图的函数给连接起来,我们点击下拉框选中不同的选项的时候,折线图也会相应的产生变化,
@app.callback(Output(component_id='bar_plot', component_property='figure'),
[Input(component_id='dropdown', component_property='value')])
def graph_update(dropdown_value):
print(dropdown_value)
# Function for creating line chart showing Google stock prices over time
fig = go.Figure([go.Scatter(x=df['date'], y=df['{}'.format(dropdown_value)],
line=dict(color='firebrick', width=4))
])
fig.update_layout(title='股价随着时间的变幻',
xaxis_title='日期',
yaxis_title='价格'
)
return fig
我们看到callback()
方法中指定输入和输出的媒介,其中Input
参数,里面的component_id
对应的是下拉框的id
也就是dropdown
,而Output
参数,当中的component_id
对应的是折线图的id
也就是bar_plot
,我们来看一下最后出来的结果如下
最后,部分代码如下所示,更多有趣的制作方面,文末获取
import dash
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px
from dash.dependencies import Input, Output
app = dash.Dash()
df = px.data.stocks()
app.layout = html.Div(id='parent', children=[
html.H1(id='H1', children='Dash 案例一', style={'textAlign': 'center',
'marginTop': 40, 'marginBottom': 40}),
dcc.Dropdown(id='dropdown',
options=[
{'label': '谷歌', 'value': 'GOOG'},
{'label': '苹果', 'value': 'AAPL'},
{'label': '亚马逊', 'value': 'AMZN'},
],
value='GOOG'),
dcc.Graph(id='bar_plot'),
])
@app.callback(Output(component_id='bar_plot', component_property='figure'),
[Input(component_id='dropdown', component_property='value')])
def graph_update(dropdown_value):
print(dropdown_value)
fig = go.Figure([go.Scatter(x=df['date'], y=df['{}'.format(dropdown_value)],
line=dict(color='firebrick', width=4))
])
fig.update_layout(title='股价随着时间的变幻',
xaxis_title='日期',
yaxis_title='价格'
)
return fig
if __name__ == '__main__':
app.run_server()
李宏毅《机器学习》国语课程(2022)来了
有人把吴恩达老师的机器学习和深度学习做成了中文版
上瘾了,最近又给公司撸了一个可视化大屏(附源码)
如此优雅,4款 Python 自动数据分析神器真香啊
梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学
香的很,整理了20份可视化大屏模板
完整代码已打包,可以按照如下方式找我
目前开通了技术交流群,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友