ElasticSearch 介绍、安装及简单使用

文章目录

      • 介绍
      • 基本概念
        • 全文搜索(Full-text Search)
        • 倒排索引(Inverted Index)
        • 节点&集群(Node & Cluster)
        • 文档(Document)
        • 索引(Index)
        • 类型(Type)
        • 文档元数据(Document Metadata)
        • 字段(Field)
      • ElasticSearch与关系型数据库对应关系
      • ElasticSearch与Solr对比
      • ElasticSearch安装
      • ElasticSearch Head安装
      • Kibana安装
      • ElasticSearch增删改查
        • 新增文档(Index API)
        • 修改文档(Update API)
        • 查询文档(Get API)
        • 删除文档(Delete API)
        • 批量操作(Bulk API)
        • 根据多个文档ID获取文档(Multi Get API)
      • ES中文分词器
        • 内置的标准分词器standard
        • IK分词器
      • 问题
        • 单机情况下增加索引集群健康状态是yellow
      • 参考网址

介绍

Elasticsearch 是大数据时代下的分布式搜索引擎,底层基于 Lucene 实现。Elasticsearch 屏蔽了 Lucene 的底层细节,提供了分布式特性,同时对外提供了 Restful API,数据交互格式为JSON。Elasticsearch 以其易用性迅速赢得了许多用户,被用在网站搜索、日志分析等诸多方面。由于 ES 强大的横向扩展能力,甚至很多人也会直接把 ES 当做 NoSQL 来用。

基本概念

全文搜索(Full-text Search)

全文检索是指计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。

倒排索引(Inverted Index)

该索引表中的每一项都记录了属性值与具有该属性值的记录的地址。由于不是由记录找到属性值而是通过属性值找到记录,所以叫作倒排索引。譬如歌手张学友唱过《味道》这首歌曲,歌手辛晓琪和吴彦斌也唱过,我们能通过张学友找到他唱了《味道》这首歌曲,但是反过来我们通过《味道》这首歌曲能找到张学友和其他歌手,这样通过属性值找到记录的方法就称为反向索引,也就是倒排索引
ES是为记录的每个字段都建立了倒排索引,所以才能实现快速高效的搜索功能。
具体倒排索引结构可以参考ElasticSearch倒排索引结构分析。

节点&集群(Node & Cluster)

ElasticSearch本质上就是分布式搜索引擎,允许多台服务器协同工作,每台服务器可以运行多个ElasticSearch实例,每个ElasticSearch实例就称为一个节点(Node),一组节点就称为一个集群(Cluster)。
单节点的ES也可以是一个集群

文档(Document)

文档其实就是用户提交给ES的一条数据,上面也说过ES数据交互格式都是JSON,所以这里的文档就是一条JSON数据。这里的文档可以类比成关系型数据库中的记录。JSON数据中含有多个字段,JSON里的字段可以类比成关系型数据库中表的字段

索引(Index)

索引(Index)可以理解成文档的集合,同在一个索引中的文档共同建立倒排索引。
索引(Index)可以类比成关系型数据库中的库(Database)

类型(Type)

文档可以分组,比如employee这个 Index 里面,可以按部门分组,也可以按职级分组。这种分组就叫做 Type,它是虚拟的逻辑分组,用来过滤 Document,类似关系型数据库中的数据表。
不同的Type应该有相似的结构,性质完全不同的数据应该存成两个Index而不是一个Index里不同的Type

ES官网提出的Type观念的演变情况如下
5.x版本中,一个Index下可以创建多个Type
6.x版本中,一个Index下只能存在一个Type
7.x版本中,去除了Type的概念
8.x版本中,正式弃用

为什么会被弃用?
因为同一个索引下,不同type下若字段名是一样的则ES会认为是一个字段而且类型必须一致,因为type只是一个虚拟的逻辑分组。不同type的数据存储其他type的字段大量空值,造成资源浪费,而且基于Lucene的倒排索引是基于Index而不是Type的,多个Type反而会减慢搜索速度。

文档元数据(Document Metadata)

文档元数据为_index、_type、_id,这三者可以唯一表示一个文档。_index表示文档存放于哪个索引,_type表示文档的对象类别,_id为文档的唯一标识。

字段(Field)

每个文档都是一条JSON数据,JSON数据中的每个key就是字段(Field)。

ElasticSearch与关系型数据库对应关系

ES早期是借鉴了关系型数据库的模式,对应关系如下图
在这里插入图片描述
对于最新的ES版本而言,由于弃用了Type概念,一张表就对应一个索引

ElasticSearch与Solr对比

二者安装都很简单;

Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;

Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式

Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;

Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。

Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

ElasticSearch安装

由于国内访问ElasticSearch官网很慢,所以建议从华为开源镜像站下载。
后续相关内容都以7.6.1版本来学习。并且相关服务都部署在Linux服务器上。
ElasticSearch 介绍、安装及简单使用_第1张图片

  • 解压文件
    将文件放到/usr/local/src/packages/es目录下
    ElasticSearch 介绍、安装及简单使用_第2张图片
    解压文件并建立软连接
cd /usr/local/src
tar zxPvf packages/es/elasticsearch-7.6.1-linux-x86_64.tar.gz
ln -s elasticsearch-7.6.1 elasticsearch

在这里插入图片描述

  • 创建ElasticSearch启动用户并给相关文件夹赋予权限
useradd es
passwd es
chown -R es:es /usr/local/src/elasticsearch-7.6.1
chown -R es:es /usr/local/src/elasticsearch
  • 修改配置文件 elasticsearch-7.6.1/config/elasticsearch.yml
    当前主机名是: master
node.name: node-1
network.host: master
discovery.seed_hosts: ["master"]
  • 修改配置文件/etc/security/limits.conf
    修改后通过 ulimit -Hn 和 ulimit -Sn查看是否生效
* soft nofile 655350
* hard nofile 655350

ElasticSearch 介绍、安装及简单使用_第3张图片

  • 修改配置文件/etc/sysctl.conf
    并执行 sysctl -p 重新加载该配置文件
vm.max_map_count=655360
  • 启动ElasticSearch
cd /usr/local/src/elasticsearch/bin
./elasticsearch
# 或者 ./elasticsearch -d 以后台进程的方式启动

ElasticSearch 介绍、安装及简单使用_第4张图片

  • 验证ElasticSearch是否正常
    在浏览器上输入 http://master:9200/ 得到下图所示
    ElasticSearch 介绍、安装及简单使用_第5张图片
    curl方式访问 curl -XGET "http://master:9200"
    ElasticSearch 介绍、安装及简单使用_第6张图片

ElasticSearch Head安装

该工具是GitHub开源的项目elasticsearch-head,能连接上ElasticSearch集群并以可视化的界面呈现信息。
该项目不仅提供了前端项目连接ElasticSearch的方式,也提供了Chrome插件方式,我们此处用Chrome插件方式即可。

插件下载地址是https://raw.githubusercontent.com/mobz/elasticsearch-head/master/crx/es-head.crx
为了能够临时解析访问该地址,需要在C:\Windows\System32\drivers\etc\hosts文件添加如下内容,添加后就可以下载了。

199.232.28.133  raw.githubusercontent.com

然后解压文件es-head.crx
ElasticSearch 介绍、安装及简单使用_第7张图片
打开Chrome浏览器的扩展程序页面chrome://extensions/ 并选择刚刚解压的文件夹es-head
ElasticSearch 介绍、安装及简单使用_第8张图片
会出现如下图的插件
ElasticSearch 介绍、安装及简单使用_第9张图片
点击红框按钮即可
ElasticSearch 介绍、安装及简单使用_第10张图片
在输入框输入ElasticSearch的HTTP访问地址,点击连接看到如下图即为正常
ElasticSearch 介绍、安装及简单使用_第11张图片

Kibana安装

  • 解压文件
    将文件放到/usr/local/src/packages/es目录下

ElasticSearch 介绍、安装及简单使用_第12张图片
解压文件并建立软连接

cd /usr/local/src
tar zxPvf packages/es/kibana-7.6.1-linux-x86_64.tar.gz
ln -s kibana-7.6.1-linux-x86_64 kibana
  • 赋予权限
chown -R es:es /usr/local/src/kibana-7.6.1-linux-x86_64
chown -R es:es /usr/local/src/kibana
  • 修改配置文件/usr/local/src/kibana-7.6.1-linux-x86_64/config/kibana.yml
server.host: "master"
elasticsearch.hosts: ["http://master:9200"]
i18n.locale: "zh-CN"
  • 启动Kibana,默认端口是5601
cd /usr/local/src/kibana-7.6.1-linux-x86_64/bin
./kibana
  • 在浏览器上输入http://master:5601/
    ElasticSearch 介绍、安装及简单使用_第13张图片
    ElasticSearch 介绍、安装及简单使用_第14张图片
    同时也能在ElasticSearch Head插件看到Kibana自己的索引,如下图
    ElasticSearch 介绍、安装及简单使用_第15张图片

ElasticSearch增删改查

新增文档(Index API)

新增文档有两种方式

  • PUT //_doc/<_id>
  • POST //_doc/

必须传入,如果索引不存在默认情况下会自动创建索引
<_id>是可选的,如果用PUT方法必须要传入<_id>,如果用POST方法则会自动生成ID

GET /student/_search
{
  "query": {
    "match_all": {}
  }
}

PUT /student/_doc/1
{
  "name": "jackie",
  "age": 26,
  "school": "ShenZhen University",
  "desc": "技术宅, 动漫爱好者, 大数据"
}


POST /student/_doc
{
  "name": "marry",
  "age": 27,
  "sex": "girl",
  "desc": "可爱的女生"
}

ElasticSearch 介绍、安装及简单使用_第16张图片
ElasticSearch 介绍、安装及简单使用_第17张图片
我们可以在ElasticSearch Head插件里查询到刚刚插入的数据
ElasticSearch 介绍、安装及简单使用_第18张图片

修改文档(Update API)

POST //_update/<_id>
可用于更新该文档的指定字段内容,若想全部更新则可以使用上面提到的PUT方法

POST /student/_update/1
{
  "doc": {
    "sex": "boy",
    "age": "28"
  }
}

在这里插入图片描述

查询文档(Get API)

GET /_doc/<_id>

GET /student/_doc/1

ElasticSearch 介绍、安装及简单使用_第19张图片

删除文档(Delete API)

DELETE //_doc/<_id>

DELETE /student/_doc/1

在这里插入图片描述

批量操作(Bulk API)

BULK API就是在单个API调用中执行多个IndexCreateDeleteUpdate操作,减少了开销,大大提高了索引速度。
但是单个API中到底执行多少个Action性能最好需要根据集群的配置来实验优化选择合适的Action数

POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }

请求格式如下

POST /_bulk

POST //_bulk

数据格式如下

action_and_meta_data\n
optional_source\n
action_and_meta_data\n
optional_source\n
....
action_and_meta_data\n
optional_source\n
  • IndexCreate操作期望下一行就是source内容。如果文档document已存在那么Create会报错,Index则会根据需要更新或添加一个document
  • Update操作期望下一行是partial doc, upsert, and script and its options
  • Delete操作下一行无内容即可。

如批量插入数据
由于我指定了往lol这个索引插入数据,所以action_and_meta_data没有显示指定索引

POST /lol/_bulk
{"index":{"_id": "1"}}
{"heroId":1,"name":"黑暗之女","alias":"Annie","title":"安妮","roles":["mage"],"attack":2,"magic":10,"difficulty":6,"goldPrice":4800,"couponPrice":2000,"keywords":["安妮","黑暗之女","火女","Annie","anni","heianzhinv","huonv","an","hazn","hn"]}
{"index":{"_id": "2"}}
{"heroId":2,"name":"狂战士","alias":"Olaf","title":"奥拉夫","roles":["fighter","tank"],"attack":9,"magic":3,"difficulty":3,"goldPrice":1350,"couponPrice":1500,"keywords":["狂战士","奥拉夫","kzs","alf","Olaf","kuangzhanshi","aolafu"]}
{"index":{"_id": "3"}}
{"heroId":3,"name":"正义巨像","alias":"Galio","title":"加里奥","roles":["tank","mage"],"attack":1,"magic":6,"difficulty":5,"goldPrice":3150,"couponPrice":2000,"keywords":["正义巨像","加里奥","Galio","jla","zyjx","zhengyijuxiang","jialiao"]}
{"index":{"_id": "4"}}
{"heroId":4,"name":"卡牌大师","alias":"TwistedFate","title":"崔斯特","roles":["mage"],"attack":6,"magic":6,"difficulty":9,"goldPrice":4800,"couponPrice":3000,"keywords":["卡牌大师","崔斯特","卡牌","TwistedFate","kp","cst","kpds","kapaidashi","cuisite","kapai"]}
{"index":{"_id": "5"}}
{"heroId":5,"name":"德邦总管","alias":"XinZhao","title":"赵信","roles":["fighter","assassin"],"attack":8,"magic":3,"difficulty":2,"goldPrice":3150,"couponPrice":2500,"keywords":["德邦总管","德邦","赵信","XinZhao","db","dbzg","zx","debangzongguan","debang","zhaoxin"]}

如批量删除数据
由于我的API里没有显示指定索引,所以在action_and_meta_data必须要显示指定哪个索引

POST /_bulk
{"delete":{"_index": "lol", "_id": "1"}}
{"delete":{"_index": "lol", "_id": "2"}}
{"delete":{"_index": "lol", "_id": "3"}}
{"delete":{"_index": "lol", "_id": "4"}}
{"delete":{"_index": "lol", "_id": "5"}}

如批量更新数据

POST /lol/_bulk
{"update":{"_id": "1"}}
{"doc": {"age": 11}}
{"update":{"_id": "2"}}
{"doc": {"age": 12}}
{"update":{"_id": "3"}}
{"doc": {"age": 13}}

当然批量操作的Action类型是可以混用的

普通插入的Curl语句如下,需要指定请求头Content-Type: application/json

curl -XPOST "http://master:9200/test1/_doc" -H 'Content-Type: application/json' -d'{  "name": "marry",  "age": 27,  "sex": "girl",  "desc": "可爱的女生"}'

但是批量操作如果用Curl的方式,则必须将请求数据存入文件,指定请求头Content-Type: application/x-ndjson,然后使用--data-binary "@filename"指定数据文件。如下所示

curl -s -XPOST "http://master:9200/_bulk?pretty" -H "Content-Type: application/x-ndjson" --data-binary "@delete_lol_requests"

ElasticSearch 介绍、安装及简单使用_第20张图片

根据多个文档ID获取文档(Multi Get API)

Multi Get API可以根据多个文档ID批量获取文档数据。既可以检索多个索引的多个文档,也可以检索单个索引的多个文档。
API请求格式如下。

GET /_mget

GET //_mget

请求体参数如下图
ElasticSearch 介绍、安装及简单使用_第21张图片
下面就是通过/_mgetAPI批量获取文档的例子

GET /lol/_mget
{
  "ids": ["1","2","3"]
}

# 只想获取指定字段
GET /lol/_mget
{
  "docs": [
    {
    "_id": "1",
    "_source": {
      "include": ["name", "age"]  
    }
  },
  {
    "_id": "2",
    "_source": {
      "include": ["name", "age"]  
    }
  },
  {
    "_id": "5",
    "_source": {
      "include": ["name", "age"]  
    }
  }
 ]
}

GET /lol/_mget
{
  "docs": [
    {
    "_id": "1",
    "_source": ["name", "age"]
  },
  {
    "_id": "2",
    "_source": ["name", "age"]
  },
  {
    "_id": "5",
    "_source": ["name", "age"]
  }
 ]
}

ES中文分词器

内置的标准分词器standard

我们以中华人民共和国国歌为例进行分词

# 默认分词器
# standard  whitespace
POST /_analyze
{
  "text": "中华人民共和国国歌",
  "tokenizer": "standard"
}

如下图所示,将每个汉字当成了一个token
ElasticSearch 介绍、安装及简单使用_第22张图片ElasticSearch 介绍、安装及简单使用_第23张图片

IK分词器

  • 安装

该项目elasticsearch-analysis-ik已在GitHub开源。
由于我们的ElasticSearch版本是7.6.1,所以也需要下载对应版本的IK分词器。
安装步骤很简单,将下载好的elasticsearch-analysis-ik-7.6.1.zip放到/usr/local/src/packages/es目录下,将解压到es-home/plugins/ik文件夹后重启ES即可。

# 在ES的HOME/plugins下创建ik文件夹
su - es
mkdir -p /usr/local/src/elasticsearch-7.6.1/plugins/ik
# 将IK分词器压缩包解压到/usr/local/src/elasticsearch-7.6.1/plugins/ik
su - root
cd /usr/local/src/packages/es
unzip elasticsearch-analysis-ik-7.6.1.zip -d /usr/local/src/elasticsearch-7.6.1/plugins/ik
chown -R es:es /usr/local/src/elasticsearch-7.6.1/plugins/ik

启动会看到如下加载了插件loaded plugin [analysis-ik]的日志
ElasticSearch 介绍、安装及简单使用_第24张图片

  • ik_max_word 分词
# ik_max_word即最细粒度分词器,穷尽可能
POST /_analyze
{
  "text": "中华人民共和国国歌",
  "tokenizer": "ik_max_word"
}

ElasticSearch 介绍、安装及简单使用_第25张图片ElasticSearch 介绍、安装及简单使用_第26张图片

  • ik_smart 分词
# ik_smart即最粗粒度分词器
POST /_analyze
{
  "text": "中华人民共和国国歌",
  "tokenizer": "ik_smart"
}

ElasticSearch 介绍、安装及简单使用_第27张图片

  • ik_max_word 和 ik_smart 什么区别?
ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合,适合 Term Query;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”,适合 Phrase 查询。
  • 自定义词典
    我们以圣枪游侠卢锡安为例进行分词,我想得到两个token圣枪游侠卢锡安,但是ik_max_wordik_smart都无法得到我想要的结果,所以需要自定义词典。
  1. 修改配置文件ES-HOME/plugins/ik/config/IKAnalyzer.cfg.xml
    添加了两个词典文件custom/my.diccustom/lol.dic(编码格式必须是UTF-8)


<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">custom/my.dic;custom/lol.dicentry>
         
        <entry key="ext_stopwords">entry>
        
        
        
        
properties>

  1. 在自定义词典custom/lol.dic中添加token
    ElasticSearch 介绍、安装及简单使用_第28张图片
  2. 验证结果
    ElasticSearch 介绍、安装及简单使用_第29张图片
    ElasticSearch 介绍、安装及简单使用_第30张图片

问题

单机情况下增加索引集群健康状态是yellow

在增加test索引后集群状态是yellow

POST /test/_doc
{
  "name": "marry",
  "age": 27,
  "sex": "girl",
  "desc": "可爱的女生"
}

ElasticSearch 介绍、安装及简单使用_第31张图片
这是因为默认自动创建的索引number_of_replicas=1即默认副本数为1
ElasticSearch 介绍、安装及简单使用_第32张图片

由于此处是单机不需要副本,可以通过AP将该索引副本数设置为0即可

# 设置索引的副本数为0
PUT /test/_settings
{
  "number_of_replicas": "0"
}

ElasticSearch 介绍、安装及简单使用_第33张图片

参考网址

ElasticSearch7.6官网文档
ElasticSearch与Solr对比
ElasticSearch倒排索引结构分析
狂神说ES教程
ElasticSearch在Linux上安装遇到的问题
ElasticSearch中文分词器
ElasticSearch官网client API

你可能感兴趣的:(ElasticSearch,elasticsearch,kibana)