Titanic(Kaggle)-数据处理(1)

数据集介绍
PassengerId乘客编号,Survived是否被救, Parch 父母子女数量,SibSP兄弟姐妹配偶数, Pclass客舱等级, Pclass登船港口,Ticket票号,Fare票价,Cabin客舱号 Cabin:缺失值很多, Fare票价由客舱等级决定,不必重复分析, Ticket没有参考价值。


缺失值处理

Age均值补齐;Cabin删除,因为Pclass和Pclass能体现出来;Ticket也删除;Embarked众数补齐.

    train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean())
    test_data['Age'] = test_data['Age'].fillna(test_data['Age'].mean())
    test_data['Fare'] = test_data['Fare'].fillna(test_data['Fare'].mean())
    train_data['Embarked'] = train_data['Embarked'].fillna('S')

    train_data = train_data.drop(['Name', 'Ticket', 'Cabin'], axis=1)
    test_data = test_data.drop(['Name', 'Ticket', 'Cabin'], axis=1)

数值化处理

    train_data.loc[train_data['Sex'] == 'female', 'Sex'] = 0
    train_data.loc[train_data['Sex'] == 'male', 'Sex'] = 1
    train_data.loc[train_data['Embarked'] == 'S', 'Embarked'] = 0
    train_data.loc[train_data['Embarked'] == 'C', 'Embarked'] = 1
    train_data.loc[train_data['Embarked'] == 'Q', 'Embarked'] = 2
    test_data.loc[test_data['Sex'] == 'female', 'Sex'] = 0
    test_data.loc[test_data['Sex'] == 'male', 'Sex'] = 1
    test_data.loc[test_data['Embarked'] == 'S', 'Embarked'] = 0
    test_data.loc[test_data['Embarked'] == 'C', 'Embarked'] = 1
    test_data.loc[test_data['Embarked'] == 'Q', 'Embarked'] = 2

年龄划分几个等级:

    data.loc[data['Age'] <= 20, 'Age'] = 0
    data.loc[(data['Age'] > 20) & (data['Age'] <= 40), 'Age'] = 1
    data.loc[(data['Age'] > 40) & (data['Age'] <= 60), 'Age'] = 2
    data.loc[data['Age'] > 60, 'Age'] = 3

船费按四分位数划分:

q = data.quantile([0.25, 0.50, 0.75])
data.loc[data['Fare'] <= q['Fare'][0.25], 'Fare'] = 0
data.loc[(data['Fare'] > q['Fare'][0.25]) & (data['Fare'] <= q['Fare'][0.50]), 'Fare'] = 1
data.loc[(data['Fare'] > q['Fare'][0.50]) & (data['Fare'] <= q['Fare'][0.75]), 'Fare'] = 2
data.loc[data['Fare'] > q['Fare'][0.75], 'Fare'] = 3

可视化处理

Titanic(Kaggle)-数据处理(1)_第1张图片

Titanic(Kaggle)-数据处理(1)_第2张图片

Titanic(Kaggle)-数据处理(1)_第3张图片

Titanic(Kaggle)-数据处理(1)_第4张图片

Titanic(Kaggle)-数据处理(1)_第5张图片

Titanic(Kaggle)-数据处理(1)_第6张图片


完整代码

import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import pandas as pd
import numpy as np
import seaborn as sns

plt.rcParams['font.sans-serif'] = ['SimHei']  # 中文
plt.rcParams['axes.unicode_minus'] = False    # 解决 -


# 先对数据进行简单处理
def simple(train_data, test_data):
    # 缺失值处理
    train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean())
    test_data['Age'] = test_data['Age'].fillna(test_data['Age'].mean())
    test_data['Fare'] = test_data['Fare'].fillna(test_data['Fare'].mean())
    # print(train_data['Embarked'].value_counts())
    train_data['Embarked'] = train_data['Embarked'].fillna('S')
    train_data = train_data.drop(['Name', 'Ticket', 'Cabin'], axis=1)
    test_data = test_data.drop(['Name', 'Ticket', 'Cabin'], axis=1)
    # 数值化处理
    train_data.loc[train_data['Sex'] == 'female', 'Sex'] = 0
    train_data.loc[train_data['Sex'] == 'male', 'Sex'] = 1
    train_data.loc[train_data['Embarked'] == 'S', 'Embarked'] = 0
    train_data.loc[train_data['Embarked'] == 'C', 'Embarked'] = 1
    train_data.loc[train_data['Embarked'] == 'Q', 'Embarked'] = 2
    test_data.loc[test_data['Sex'] == 'female', 'Sex'] = 0
    test_data.loc[test_data['Sex'] == 'male', 'Sex'] = 1
    test_data.loc[test_data['Embarked'] == 'S', 'Embarked'] = 0
    test_data.loc[test_data['Embarked'] == 'C', 'Embarked'] = 1
    test_data.loc[test_data['Embarked'] == 'Q', 'Embarked'] = 2
    return train_data, test_data


def age_label(data):
    data.loc[data['Age'] <= 20, 'Age'] = 0
    data.loc[(data['Age'] > 20) & (data['Age'] <= 40), 'Age'] = 1
    data.loc[(data['Age'] > 40) & (data['Age'] <= 60), 'Age'] = 2
    data.loc[data['Age'] > 60, 'Age'] = 3
    return data


# fare直接按4分位数分区间
def fare_label(data):
    q = data.quantile([0.25, 0.50, 0.75])
    data.loc[data['Fare'] <= q['Fare'][0.25], 'Fare'] = 0
    data.loc[(data['Fare'] > q['Fare'][0.25]) & (data['Fare'] <= q['Fare'][0.50]), 'Fare'] = 1
    data.loc[(data['Fare'] > q['Fare'][0.50]) & (data['Fare'] <= q['Fare'][0.75]), 'Fare'] = 2
    data.loc[data['Fare'] > q['Fare'][0.75], 'Fare'] = 3
    return data


# 以下进行可视化
def survived_pie(train_data):     # 查看整体营救率
    # 被救是否
    survived = ['未被营救', '生存']
    survived_y = train_data['Survived'].value_counts().values
    plt.pie(survived_y, labels=survived, autopct='%.2f%%')
    plt.title("整体营救率")
    plt.legend()
    plt.show()


def sex_bar(train_data):
    sex_x = ['male', 'female']
    sex_y = train_data['Sex'].value_counts().values
    sex_survived = [len(train_data[(train_data['Sex'] == 1) & (train_data['Survived'] == 1)]),
                    len(train_data[(train_data['Sex'] == 0) & (train_data['Survived'] == 1)])]
    bars1 = plt.bar(sex_x, sex_y, width=0.4, tick_label=sex_x, color='#008B8B')
    bars2 = plt.bar(sex_x, sex_survived, width=0.4, tick_label=sex_x, color='#FF6347')
    plt.title("性别和生存")
    red_patch = mpatches.Patch(color='#008B8B', label='总人数')
    blue_patch = mpatches.Patch(color='#FF6347', label='生存数')
    plt.legend(handles=[red_patch, blue_patch])
    for bar1, bar2 in bars1, bars2:
        plt.text(bar1.get_x() + bar1.get_width() / 2, bar1.get_height(), str(bar1.get_height()), size=15, ha='center', va='bottom')
        plt.text(bar2.get_x() + bar2.get_width() / 2, bar2.get_height(), str(bar2.get_height()), size=15, ha='center', va='bottom')
    plt.show()


def pclass_bar(train_data):
    grid = sns.FacetGrid(train_data, col='Survived', row='Pclass')
    grid.map(plt.hist, 'Age', alpha=.5, bins=20)
    grid.add_legend()
    plt.show()


def embarked_barh(train_data):
    embarked_x = ['S', 'C', 'Q']
    embarked_y = train_data['Embarked'].value_counts().values
    embarked_survived = [len(train_data[(train_data['Embarked'] == 0) & (train_data['Survived'] == 1)]),
                         len(train_data[(train_data['Embarked'] == 1) & (train_data['Survived'] == 1)]),
                         len(train_data[(train_data['Embarked'] == 2) & (train_data['Survived'] == 1)])]
    plt.barh(embarked_x, embarked_y, color='#008B8B')
    plt.barh(embarked_x, embarked_survived, color='#FF6347')
    plt.title("登船口和生存")
    red_patch = mpatches.Patch(color='#008B8B', label='总人数')
    blue_patch = mpatches.Patch(color='#FF6347', label='生存数')
    plt.legend(handles=[red_patch, blue_patch])
    embarked_survived_ratio = embarked_survived / embarked_y
    for i, v in enumerate(embarked_survived_ratio):
        v = round(v, 2)
        plt.text(v, i, str('%.1f' % (v * 100)) + '%', fontweight='bold', size=16)
    plt.show()


def age_hist(train_data):
    ages = train_data['Age']
    plt.hist(ages, bins=20, color="steelblue", edgecolor="black", label="总人数")
    plt.title('年龄与生存的直方图')
    plt.xlabel('年龄')
    plt.ylabel('人数')
    plt.hist(train_data.loc[(train_data['Survived'] == 1), 'Age'], bins=20, color="#FF6347", label="生存数")
    plt.legend()
    plt.show()


def fare_hist(train_data):
    fare = train_data['Fare']
    plt.hist(fare, color="steelblue", edgecolor="black", label="总人数", bins=20)
    plt.title('船费与生存的直方图')
    plt.xlabel('船费')
    plt.ylabel('人数')
    plt.hist(train_data.loc[(train_data['Survived'] == 1), 'Fare'], color="#FF6347", label="生存数", bins=20)
    plt.legend()
    plt.show()


if __name__ == '__main__':
    train_data = pd.read_csv('data/train.csv')
    test_data = pd.read_csv("data/test.csv")
    # pd.set_option('display.max_columns', 20)
    # print(train_data.head(5))

    print(train_data.info())
    print(test_data.info())
    print(train_data.describe())

    train_data, test_data = simple(train_data, test_data)

    survived_pie(train_data)
    sex_bar(train_data)
    pclass_bar(train_data)
    embarked_barh(train_data)
    age_hist(train_data)
    # 对年龄进行标号处理
    train_data = age_label(train_data)
    test_data = age_label(test_data)
    # 对费用进行标号处理
    fare_hist(train_data)
    train_data = fare_label(train_data)
    test_data = fare_label(test_data)


    # # print(train_data.info())
    # # print(test_data.info())

    # train_data.to_csv('data/train_pre.csv', index=False)
    # test_data.to_csv('data/test_pre.csv', index=False)
    # print("Your PreprocessedData was successfully saved!")

你可能感兴趣的:(python,数据分析)