- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 『大模型笔记』AI自动化编程工具汇总[持续更新ING]!
AI大模型前沿研究
大模型笔记大模型AI自动化工具bolt.newCursorV0
『大模型笔记』AI自动化编程工具汇总!文章目录一.Bolt.new(开源AI驱动全栈Web开发工具)1.1.Bolt.new介绍1.2.编程小白如何打造自己的导航网站二.Cursor(人工智能代码编辑器)2.1.Cursor入门教程2.2.Cursor左侧布局设置和VSCode一样2.3.Cursor效率之道:Agent模式+7大高级技巧详解三.Windsurf(颠覆Cursor的全新工具)3.1
- Topaz Video AI——视频修复
爱研究的小牛
AIGC—视频AIGC
一、TopazVideoAI介绍及使用TopazVideoAI是一款基于人工智能的视频增强和修复软件,主要用于提升视频质量、去噪、插帧和分辨率提升。它利用深度学习技术对视频进行智能化处理,使得视频看起来更加清晰和流畅。TopazVideoAI特别适合那些需要修复旧视频、提升低分辨率视频质量的用户。二、TopazVideoAI的主要功能视频去噪:通过AI模型去除视频中的噪点,使画面更加干净。分辨率提
- RPA真的是人工智能吗?
微刻时光
RPA加油站rpa人工智能
1.RPA与AI的定义与区别1.1RPA的定义与特点机器人流程自动化(RoboticProcessAutomation,简称RPA)是一种软件技术,它通过模拟人类用户的操作行为来自动执行重复性、基于规则的任务。RPA的核心特点包括:非侵入性:RPA作为外挂工具部署在客户现有系统上,不影响原有IT基础架构。基于规则的操作:RPA流程必须有明确的、可被数字化的触发指令和输入,不允许出现无法提前定义的例
- 影刀 RPA:企业数字化转型的强大引擎
RPA李老师
rpa
一、影刀RPA是什么影刀RPA是一种基于机器学习和人工智能技术的自动化工具,它在当今数字化时代发挥着重要作用。影刀RPA是一款软件机器人,能模拟人的各种操作,在任何应用程式上进行鼠标点击、键盘输入、读取信息等自动化操作,释放人非主观决策、逻辑性高、规则性强的工作。在了解影刀RPA之前,我们先来认识一下RPA。RPA是RoboticProcessAutomation(机器人流程自动化)的简称,201
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- 【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向
努力学习的大大
学术会议推荐人工智能大数据深度学习神经网络
【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向文章目录【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向2025
- 2025年新出炉的MySQL面试题
长风清留扬
150道MySQL高频面试题mysql数据库面试sql
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- 精选了几道MySQL的大厂面试题,被提问的几率很高!
长风清留扬
150道MySQL高频面试题mysqlandroid数据库面试学习MySQL面试
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- 智能运维分析决策系统:赋能数字化转型的智慧引擎
我的运维人生
运维运维开发技术共享
智能运维分析决策系统:赋能数字化转型的智慧引擎在数字化转型的大潮中,企业运维管理正经历着从传统手动运维向智能化、自动化运维的深刻转变。智能运维分析决策系统(AIOps,ArtificialIntelligenceforITOperations)作为这一转变的核心驱动力,通过融合大数据、机器学习、人工智能等先进技术,实现了对运维数据的深度洞察与智能决策,极大地提升了运维效率与质量,为企业数字业务的连
- ChatGPT是强人工智能吗?
呵呵爱吃菜
chatgpt人工智能
ChatGPT是强人工智能吗?本文从人工智能发展的三个阶段的角度,分析当前强大的AI大模型所处的阶段,并通过对比各阶段的定义,明确各阶段的特点和未来发展方向;NarrowAI(弱人工智能)、AGI(人工通用智能)和ASI(人工超级智能)代表了人工智能发展的三个不同阶段,它们在智能水平、任务范围和应用场景上存在显著差异。以下是它们的总结与对比:1.定义与特点类型NarrowAI(弱人工智能)AGI(
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- 讯飞绘镜(ai生成视频)技术浅析(一)
爱研究的小牛
AIGC—视频AIGC—技术综述人工智能AIGC深度学习
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。以下是对讯飞绘镜相关技术、工作原理及具体实现的详细介绍:一、核心技术讯飞绘镜的核心技术主要依托于科大讯飞的星火大模型,并结合了多种先进的AI技术,包括:1.大模型技术:基于讯飞星火大模型,为脚本生成、分镜生成等提供基础能力支持。该模型能
- 第72期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.从孤立指令到互动鼓
- 第四届先进材料与机械电子国际学术会议(ICAMM 2024)
2301_79125431
java
第四届先进材料与机械电子国际学术会议(ICAMM2024)【前三届均已见刊EI检索,检索信息均可查询!四大高校联合支持】2024年第四届先进材料与机械电子国际题解|字符串排序-golang最简洁最易懂解法packagemainimport("bufio""fmt&q题解|#数列求和#publicclassMain{publicstaticvoidmain(Str第四届图像处理与智能控制国际学术会议
- 开发基于WebRTC和OpenAI实时API的AI语音助手框架:技术解析与最佳实践
花生糖@
AIGC学习资料库webrtc人工智能
随着人工智能(AI)和实时通信技术的发展,构建一个能够提供即时响应、多语言支持以及个性化用户体验的AI语音助手变得越来越重要。本文将深入探讨如何使用现代Web技术和先进的AI工具开发这样一个语音助手框架,具体来说,我们将基于Next.js、WebRTC和OpenAIAPI创建一个高效且用户友好的解决方案。技术架构主框架-Next.js选择Next.js作为主框架不仅因为它提供的服务端渲染(SSR)
- 国外各领域专家学者的一些谏言:如何使AI代理架构变得成功
强哥之神
人工智能语言模型AI代理智能体大模型Agent
最近在研究AI代理架构为什么比较难落地,看到有一篇文章是关于各领域专家学者对AI代理架构的一些看法,值得关注。我将其整理成了中文,大家可一起细品各家观点,全文如下。代理型人工智能被寄予厚望,其潜力在于能够独立完成复杂任务。然而,目前该领域的炒作热潮远超实际成功案例,背后原因复杂多样。“2024年,AI代理已成为众多供应商的营销热词。但对于用户组织而言,代理技术还处于早期探索阶段,充满好奇心与实验性
- 【人工智能时代】- 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
xiaoli8748_软件开发
人工智能时代人工智能开源数据库
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。什么是向量数据库?向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- QGroundControl(QGC)详细介绍
QGC二次开发
QGCqtqmlQGC无人机地面控制站无人机无人机手持机
目录一.QGC官网:1.64位版本Windows:2.MacOSX:3.UbuntuLinux:二.QGC的基本功能1.无人机控制2.实时监视3.校准功能4.设置功能5.传感器校准6.通信协议支持三.QGC的用途1.航拍与地形测绘2.农业监测3.环境监测4.搜索与救援5.安全巡逻与监控QGroundControl(简称QGC)是一款开源的无人机地面站软件,专为无人机操作员设计,集成了实时飞行监控、
- 线性回归——最小二乘法代数详细计算过程
在天愿作比翼鸟在地愿为连理枝
机器学习和人工智能学习概述线性回归最小二乘法机器学习
Reference:动手实战人工智能AIByDoing关于矩阵方法的求解可参考:最小二乘法矩阵详细计算过程基本定义:通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。在上图呈现的这个过程中,通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。而线性回归中的「线性」代指线性关系,也就是图中所绘制的红色直线。所以,找到最适合的那一条红色直线,就成为了线性回归中需要解决的目
- 《数据孤岛:AI模型训练之殇,精度与泛化的双重困境》
人工智能深度学习
在人工智能飞速发展的当下,数据就是模型的“燃料”。从医疗影像诊断到智能交通调度,从电商推荐系统到金融风险预测,AI模型的精准度与泛化能力,决定了其在实际应用中的价值。然而,一个棘手的问题正阻碍着AI前行的步伐——数据孤岛。数据孤岛,是指在组织内部或不同组织之间,由于系统、管理或流程的原因,数据被孤立存储在不同的数据库、应用程序或部门中,彼此之间缺乏有效的连接和整合。据权威机构调研,在高度信息化的企
- 微信视频号下载神器
小众独行
分享快乐webapp小程序pythonjavascript
软件名称:wx_channels_download软件功能:微信视频号下载器支持平台:windows简介:一个微信视频号下载器,可以下载微信视频号中的视频内容。只需在视频页面点击下载按钮,即可轻松获取所需视频。支持下载直播回放,并兼容macOS系统,首次使用时会自动安装所需证书,后续使用则无需重复安装。首次打开会自动安装证书,然后启动服务。当终端提示『服务已正确启动』就说明可以使用了。打开微信PC
- 自动驾驶系统研发系列—追尾风险不再隐形:解密后碰撞预警系统(RCW)的技术与应用
学步_技术
自动驾驶系统研发自动驾驶人工智能机器学习RCW
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理