- 学习pytorch
阿什么名字不会重复呢
学习pytorch人工智能
学习PyTorch是一个很好的选择,尤其是如果你对深度学习和机器学习感兴趣。以下是一个详细的学习计划,可以帮助你系统地掌握PyTorch的基本概念和应用。学习计划概览学习周期:8周(每周约4-5小时)目标:掌握PyTorch基础,能够实现简单的深度学习模型。第1周:基础知识目标:了解深度学习的基础知识,掌握Python和NumPy基础。任务:学习Python基础(数据类型、控制流、函数、类)。资源
- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 视频编码(一)
程序员王马
windows图形显示驱动开发驱动开发windows
关于Direct3D12视频编码在Windows11(WDDM3.0)之前,DirectX12提供了应用程序和驱动程序级接口(API和DDI),以支持多个视频应用程序的GPU加速,包括视频解码、视频处理和运动估计。从Windows11开始,D3D12向现有视频API/DDI系列添加了视频编码功能。此功能提供一组一致的编码API/DDI,这些API/DDI与现有的D3D12框架一致,并允许开发人员使
- 单目3d重建DUSt3R 笔记
AI算法网奇
3D视觉人工智能
目录DUSt3R三维重建报错RecursionError:maximumrecursiondepthexceededincomparison报错numpy.core.multiarrayfailedtoimport报错Numpyisnotavailable解决升级版mast3r速度变慢修改了参数设置脚本:测试效果操作技巧DUSt3R三维重建git地址:GitHub-naver/dust3r:DUS
- AI驱动的代码重构与优化技术
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI驱动的代码重构与优化技术概述什么是AI驱动的代码重构与优化?AI驱动的代码重构与优化技术,是指利用人工智能,特别是机器学习和深度学习的算法,对软件代码进行自动分析和改进的技术。这种技术能够通过学习大量的代码样本,识别出代码中的模式、问题和改进点,从而自动完成代码的重构和优化。重构的定义重构(Refactoring)是改进代码内部结构而不改变外部行为的过程。其目的通常是为了提高代码的可读性、可维
- 神经网络模型压缩&实例教程—非结构化剪枝
程序先锋
《python深度学习》笔记神经网络剪枝深度学习
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)3.1随机剪枝weight3.2L1范数剪枝bias4.总结最先进的深度学习技术依赖于难以部署的过度参数化模型。相反,已知生物神经网络使用高效的稀疏连接。为了在不牺牲准确性的情况下减少内存、电池和硬件消耗,通过减少模型中的参数数量来确定压缩模型的最佳技术是很重要的。这反过来又允许您在设备上部署轻量级模型,并通过设备上的私
- 深度学习模型压缩:非结构化剪枝与结构化剪枝的定义与对比
从零开始学习人工智能
深度学习剪枝人工智能
****在深度学习中,模型压缩是优化模型性能、降低存储和计算成本的重要技术之一。其中,剪枝(Pruning)是最常用的方法之一。根据剪枝的粒度和目标,剪枝可以分为非结构化剪枝(UnstructuredPruning)和结构化剪枝(StructuredPruning)。本文将详细介绍这两种剪枝方法的定义,并通过对比帮助读者更好地理解它们的差异。1.非结构化剪枝(UnstructuredPruning
- 给空间加载图标
weixin_30859423
//MFCday003Dlg.h:头文件//#pragmaonce#include"MylistCtrl.h"#include"afxcmn.h"//CMFCday003Dlg对话框classCMFCday003Dlg:publicCDialogEx{//构造public:CMFCday003Dlg(CWnd*pParent=NULL);//标准构造函数//对话框数据enum{IDD=IDD_MF
- 图像分割基础:使用Python和scikit-image库
0dayNu1L
机器学习项目实战python人工智能机器学习
大家好,今天我们将一起探讨图像分割的基础知识,并使用Python编程语言以及scikit-image库来实现一个简单的图像分割示例。图像分割是图像处理中的一项重要技术,它允许我们将图像划分为多个部分或对象,这对于图像分析和计算机视觉任务至关重要。0dayNu1L-CSDN博客目录一、环境准备二、图像分割示例1.导入必要的库2.读取并显示图像3.创建标签数组并进行阈值分割4.使用颜色表示标签三、结果
- 从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略
一键难忘
剪枝深度学习算法知识蒸馏
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中文章目录从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略1.
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- Unreal Engine开发:Unreal Engine基础入门_静态网格物体与材质基础
chenlz2007
游戏开发2虚幻材质游戏引擎关卡设计网络java
静态网格物体与材质基础在上一节中,我们探讨了如何在UnrealEngine中创建和配置基本的游戏场景。现在,我们将深入学习静态网格物体(StaticMesh)和材质(Material)的基础知识,这是构建游戏世界的重要组成部分。静态网格物体什么是静态网格物体?静态网格物体是UnrealEngine中用于表示不可变形的3D物体的基本资源类型。它们通常用于游戏环境中的建筑、装饰物、地面等。静态网格物体
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 模型保存与加载:PyTorch中的实践指南
冰蓝蓝
自然语言处理pytorch人工智能python
在深度学习项目中,模型的保存和加载是一个至关重要的步骤。它不仅有助于在训练过程中保存进度,还可以在训练完成后部署模型。PyTorch提供了灵活的方式来保存和加载模型,本文将详细介绍这些方法。模型保存在PyTorch中,有两种主要的模型保存方法:保存整个模型和仅保存模型参数。保存整个模型保存整个模型意味着保存模型的结构和参数。这种方法简单直接,但文件体积较大,且依赖于模型的具体实现。importto
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- torch.unsqueeze:灵活调整张量维度的利器
冰蓝蓝
transformertransformer深度学习
在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是PyTorch提供的一个非常有用的工具,用于在指定位置增加张量的维度。本文将详细介绍torch.unsqueeze的用法和一些实际应用场景。什么是torch.unsqu
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 增强型屏障(二)
程序员王马
windows图形显示驱动开发驱动开发windows
同步图形处理器旨在并行执行尽可能多的工作。任何依赖于先前GPU工作的GPU工作都必须在访问相关数据之前同步。增强型屏障接口使用显式SyncBefore和SyncAfter值作为逻辑位字段掩码。在执行屏障之前,屏障必须等待所有前面的命令SyncBefore范围完成。同样,屏障必须阻止所有后续的SyncAfter范围,直到屏障完成。D3D12DDI_BARRIER_SYNC指定GPU工作相对于屏障的同
- 人工智能伦理与可持续发展
CarlowZJ
人工智能
前言人工智能(AI)技术正在深刻地改变我们的生活和工作方式。从自动驾驶汽车到智能医疗系统,从个性化推荐到自动化决策,AI的应用无处不在。然而,随着技术的快速发展,其伦理和社会影响也引发了广泛的关注。人工智能伦理不仅涉及技术本身的公平性、透明性和安全性,还涉及到更广泛的社会、经济和环境影响。本文将探讨人工智能伦理的核心问题,并从可持续发展的角度提出应对策略。一、人工智能伦理的核心问题1.1数据隐私与
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- 第二十五篇 SQL优化杀手锏:用分析函数让你的查询快如闪电
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、初识分析函数:外卖骑手的一天1.1真实工作场景二、分析函数三板斧(超直观对比表)三、手把手教学:5大核心函数详解️3.1排名三剑客(班级成绩单案例)3.1.1ROW_NUMBER():唯一学号式排名3.1.2RANK():运动会颁奖式排名3.1.3DENSE_RANK():电梯楼层式排名3.2时间旅行函数(股票分析案例)3.3滑动窗口函数(疫情数据分析)四、性能优化三大绝招(让老板眼前一亮
- 第三篇 从入门到专业:SQL标准语法详解与高效编码规范指南
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、SQL的"普通话"——标准SQL1.1为什么需要标准SQL?二、SQL三大语句类型(附记忆口诀)2.1DDL(数据定义语言)——"盖房子"2.2DML(数据操作语言)——"搬家具"2.3DCL(数据控制语言)——"配钥匙"三、SQL书写规范(避免被同事吐槽)3.1基础排版规范3.2注释规范四、新手必看避坑指南4.1常见错误4.2安全操作建议五、实战训练(含答案解析)5.1创建商品表5.2数
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- 【人工智能基础2】Tramsformer架构、自然语言处理基础、计算机视觉总结
roman_日积跬步-终至千里
人工智能习题人工智能自然语言处理计算机视觉
文章目录七、Transformer架构1.替代LSTM的原因2.Transformer架构:编码器-解码器架构3.Transformer架构原理八、自然语言处理基础1.语言模型基本概念2.向量语义3.预训练语言模型的基本原理与方法4.DeepSeek基本原理九、计算机视觉七、Transformer架构1.替代LSTM的原因处理极长序列时,效率下降:虽然LSTM设计的初衷是解决长期依赖问题,即让模型
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理