python计算方差膨胀因子_VIF方法(方差膨胀因子)因子独立性检验 全流程解读...

基于因子模型的选股策略是股票市场量化应用最广泛的模型之一。然而很多时候,使用因子模型在实盘运行的绩效并不理想,究其原因可能是由于因子选择的偏差,市场风格轮动等。但还有一个显著的因素,就是选取因子之间可能存在高度的多重共线性,导致模型对股票价格与市场的解释能力存在很大偏误。

为了在筛选因子之初就避免陷入这样的误区。本文介绍一种VIF(方差膨胀检验)方法,来对因子之间的线性相关关系进行检验,从而帮助投资者们在可以选取到独立性更好的因子,增强因子模型的解释能力。

一、方法介绍

所谓VIF方法,计算难度并不高。在线性回归方法里,应用最广泛的就是最小二乘法(OLS),只不过我们对每个因子,用其他N个因子进行回归解释。

其中有一个检验模型解释能力的检验统计指标为R^2(样本可决系数),R^2的大小决定了解释变量对因变量的解释能力。而为了检验因子之间的线性相关关系,我们可以通过OLS对单一因子和解释因子进行回归,然后如果其R^2较小,说明此因子被其他因子解释程度较低,线性相关程度较低。

注:之所以不使用协方差计算相关性是由于协方差难以应用在多元线性相关情况下。给出VIF计算方法:

从上文很容易看出,VIF越高解释变量和因变量之间线性相关性就越强。

二、检验实践

你可能感兴趣的:(python计算方差膨胀因子)