1 . 关闭防火墙和SElinux
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
2 . 安装gcc gcc-c++ 编译器
yum install -y gcc gcc-c++ make
3 . 将redis-5.0.7.tar.gz 压缩包上传到/opt目录中然后解压
cd /opt/
wget http://download.redis.io/releases/redis-5.0.7.tar.gz
tar zxvf redis-5.0.7.tar.gz
#进入目录然后直接make
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了Makefile 文件,所以在解压完软件包后,
不用先执行./configure 进行配置,可直接执行make与make install命令进行安装
4 . 执行install_server.sh脚本
#执行软件包提供的 install_server.sh 脚本文件设置Redis服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
....... #一直回车.
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/ redis-server
#需要手动修改为 /usr/local/redis/bin/redis-server
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379.conf #配置文件路径
Log file : /var/log/redis_6379.log #日志文件路径
Data dir : /var/lib/ redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/redis/bin/redis-cli #客户端命令工具
5.优化路径,检查端口是否打开
#把redis的可执行程序文件放入路径环境变量的目录中便于系统识别
ln -s /usr/local/redis/bin/* /usr/local/bin/
#当install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认侦听端口为6379
netstat -natp | grep redis
#Redis服务控制
/etc/init.d/redis_6379 stop #停止
/etc/init.d/redis_6379 start #启动
/etc/init.d/redis_6379 restart #重启
/etc/init.d/redis_6379 status #状态
6 . 修改配置文件并重启
#修改配置 /etc/redis/6379.conf 参数(只需添加监听地址,其他已经默认开启了)
vim /etc/redis/6379.conf
bind 127.0.0.1 192.168.80.25 #70行,添加监听的主机地址
port 6379 #93行,Redis默认的监听端口
daemonize yes #137行,启用守护进程
pidfile /var/run/redis_6379.pid #159行,指定PID文件
loglevel notice #167行,日志级别
logfile /var/log/redis_6379.log #172行,指定日志文
/etc/init.d/redis_6379 restart #重启
1.关闭防火墙
2.安装编译器
3.下载配置源码
5.优化路径
6.修改配置文件
redis-server: 用于启动Redis 的工具
redis-benchmark: 用于检测Redis在本机的运行效率
redis-check-aof: 修复AOF持久化文件
redis-check-rdb: 修复RDB 持久化文件
redis-cli: Redis 命令行工具
rdb 和 aof 是redis服务中持久化功能的两种形式!
语法: redis-cli -h host -p port -a password
选项:
-h :指定远程主机
-p :指定Redis 服务的端口号
-a :指定密码,未设置数据库密码可以省略-a选项
若不添加任何选项表示,则使用127.0.0.1:6379 连接本机上的 Redis 数据库,
redis-cli -h 192.168.80.20 -p 6379
redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。
基本的测试语法: redis-benchmark [选项] [选项值]
-h :指定服务器主机名。
-p :指定服务器端口。
-s :指定服务器socket(套接字)
-c :指定并发连接数。
-n :指定请求数。
-d :以字节的形式指定 SET/GET 值的数据大小。
-k : 1=keep alive 0=reconnect
-r : SET/GET/INCR 使用随机key, SADD使用随机值。
-P :通过管道传输请求。
-q :强制退出redis。 仅显示query/sec 值。
--csv :以CSV格式输出。
-l :生成循环,永久执行测试。
-t :仅运行以逗号分隔的测试命令列表。
-I : Idle模式。仅打开 N 个idle连接并等待。
示例1:向IP地址为192.168.80.20、 端口为6379 的Redis 服务器发送200个并发连接与200000 个请求测试性能。
redis-benchmark -h 192.168.80.20 -p 6379 -c 200 -n 200000
redis-benchmark -h 192.168.80.20 -p 6379 -q -d 256
Redis支持多数据库,Redis 默认情况下包含16个数据库,数据库名称是用数字0-15 来依次命名的。 多数据库相互独立,互不干扰。
SELECT (选择库)
#多数据库间切换
命令格式: select 序号
使用 redis-cli 连接Redis数据库后,默认使用的是序号为 0 的数据库。
127.0.0.1:6379> select 10 #切换至序号为10的数据库
127.0.0.1:6379[10]> select 15 #切换至序号为15的数据库
127.0.0.1:6379[15]> select 0 #切换至序号为0的数据库
redis 127.0.0.1:6379> COMMAND KEY_NAME
Redis keys 命令下表给出了与 Redis 键相关的基本命令:
持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。Redis 提供了不同级别的持久化方式:
在自动触发RDB持久化时,Redis 也会选择bgsave而不是save来进行持久化。自动触发流程:
除了 save m n 以外,还有一些其他情况会触发bgsave:
启动时加载
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于A0F的优先级更高,因此当AOF开启时,Redis会优先载入AOF文件来恢复数据;只有当A0F关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。
原理是将7Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到甲独的日志文件中,查询操作不会记录;当Redis重启时再次执行AOF文件中的命令来恢复数据。与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。
执行流程
●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite): 定期重写AOF文件, 达到压缩的目的。
(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘I0成为Redis负载的瓶颈。命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2) 文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步 函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
1.appendfsync always:
命令写入aof_ buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘I0成为性能瓶颈。Redis只 能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低ssD的寿命。
2.appendfsync :
命令写入aof_buf后 调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
3.appendfsync everysec:
命令写入aof_buf后调用系统write操作,write 完成后线程返回; fsync同步 文件操作由专门的线程每秒调用一次。everysec是 前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
(3) 文件重写(rewrite)
文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入:因此在一些现实中, 会关闭自动的文件重写,然后通过定时任务在每天的某一一时刻定时执行。
文件重写触发方式:
手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork 子进程进行具体的工作,且都只有在fork时阻塞。
自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof- rewrite-percentage选项来自动执行BGREWRITEAOF。只有当auto-aof-rewrite-min-size和auto-aof - rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
vim /etc/redis/ 6379. conf
----729----
● auto-aof- rewrite-percentage 100
当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,
发生BGREWRITEAOF操作
● auto-aof - rewrite-min-size 64mb
当前A0F文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
文件重写执行流程:
1.Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。
2.父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
3.父进程fork后,bgrewriteaof 命令返回"Background append only file rewrite started" 信息并不再阻塞父进程,并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有A0F机制的正确。
4.由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_ rewrite_buf) 保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行 期间,Redis的写 命令同时追加到aof_ buf和aof_ rewirte_ buf两个缓冲区。
5.子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
6.子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
7.父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。8.使用新的AOF文件替换老文件,完成AOF重写。
Redis服务器默认开启RDB,关闭AOF的, 要开启AOF,需要在/etc/ redis/6379.conf配置文件中配置。
vim /etc/redis/6379.conf
-----700行--修改, 开启AOF
appendonly yes
-----704行--指定A0F文件名称
appendfilename "appendonly.aof"
-----796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart #重启redis
RDB的优点
RDB的缺点
AOF 优点
AOF 缺点
1 . 查看Redis内存使用192.168.9.236: 7001> info memory
2 . 内存碎片率操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_ memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)3 . 跟踪内存碎片率跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150号, 其中50号是内存碎片率。需要在redis-cli工具.上输入shutdown save命令,并重启Redis 服务器。
内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少Redis内存占用。
4 . 内存使用率redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。避免内存交换发生的方法:
● 针对缓存数据大小选择安装Redis 实例
● 尽可能的使用Hash数据结构存储
● 设置key的过期时间
5 . 内回收key保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改maxmemory- policy属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru :使用LRU算法从已设置过期时间的数据集合中淘汰数据
●volatile-ttl :从已设置过期时间的数据集合中挑选即将过期的数据淘汰
●volatile-random :从已设置过期时间的数据集合中随机挑选数据淘汰
●allkeys-lru :使用LRU算法从所有数据集合中淘汰数据
●allkeys-random :从数据集合中任意选择数据淘汰
●noenviction :禁止淘汰数据