Pytorch遇到的坑:为什么模型训练时,L1loss损失无法下降?

最近在用L1loss做一个回归模型的训练,发现模型训练过程中loss及其不稳定,且训练效果很差,终于找到原因了!

原代码如下:

criterion = nn.L1Loss()
def train():
    print('Epoch {}:'.format(epoch + 1))
    model.train()
    # switch to train mode
    for i, sample_batched in enumerate(train_dataloader):
        input, target = sample_batched['geno'], sample_batched['pheno']
        # compute output
        output = model(input.float().cuda())
        loss = criterion(output, target.float().cuda())
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

以上代码问题出在:

loss = criterion(output, target.float().cuda())

我输入的batchsize是4,因此output的size是[4,1],也就是一个二维的数据;target的size是[4]。loss输出的结果是一个正确的数值。这也是我没发现问题的原因!我们看一下pytorch库里l1_loss的代码:

def l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):
    # type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
    r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor

    Function that takes the mean element-wise absolute value difference.

    See :class:`~torch.nn.L1Loss` for details.
    """
    if not torch.jit.is_scripting():
        tens_ops = (input, target)
        if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
            return handle_torch_function(
                l1_loss, tens_ops, input, target, size_average=size_average, reduce=reduce,
                reduction=reduction)
    if not (target.size() == input.size()):
        warnings.warn("Using a target size ({}) that is different to the input size ({}). "
                      "This will likely lead to incorrect results due to broadcasting. "
                      "Please ensure they have the same size.".format(target.size(), input.size()),
                      stacklevel=2)
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)
    if target.requires_grad:
        ret = torch.abs(input - target)
        if reduction != 'none':
            ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
    else:
        expanded_input, expanded_target = torch.broadcast_tensors(input, target)
        ret = torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
    return ret

代码里的warning,要求input和target的size必须一致,不然会出现不对的结果。我自己代码里把warning给ignore了,所以这个warning一直没看到!这里提醒大家,一定不要随意ignore warning,并且要好好看warning,不要只看error。。。。

我把代码改成以下,就没有问题了:

loss = criterion(output.squeeze(), target.float().cuda())

既然问题解决了,得知道为啥size不匹配会导致模型出错呀,不然找了那么久的bug不是白瞎了= =

我们先尝试错误输入,输入的size是[4,1],target的size是[4]

input = tensor([[-0.3704, -0.2918, -0.6895, -0.6023]], device='cuda:0',
       grad_fn=)
target = tensor([ 63.6000, 127.0000, 102.2000, 115.4000], device='cuda:0')

expanded_input, expanded_target = torch.broadcast_tensors(input, target)

ret = torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))

 返回 expanded_input:

tensor([[-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023]], device='cuda:0',
       grad_fn=)

返回 expanded_target:

tensor([[ 63.6000,  63.6000,  63.6000,  63.6000],
        [127.0000, 127.0000, 127.0000, 127.0000],
        [102.2000, 102.2000, 102.2000, 102.2000],
        [115.4000, 115.4000, 115.4000, 115.4000]], device='cuda:0') 

返回ret:

tensor(102.5385, device='cuda:0', grad_fn=)

接下来是正确输入,输入的size是[4],target的size是[4]: 

 input = tensor([-0.3704, -0.2918, -0.6895, -0.6023], device='cuda:0',
       grad_fn=)
target = tensor([ 63.6000, 127.0000, 102.2000, 115.4000], device='cuda:0')

expanded_input, expanded_target = torch.broadcast_tensors(input, target)

ret = torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))

 返回 expanded_input:

 tensor([[-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023],
        [-0.3704, -0.2918, -0.6895, -0.6023]], device='cuda:0',
       grad_fn=)

返回ret:

tensor(102.5385, device='cuda:0', grad_fn=)

 经过mean求平均之后,返回的ret值是一样的,唯一不同的是expanded_input。这个中间值不一样,是否会导致梯度变化?为了验证这个想法,我们在代码中输出input的梯度值。

for name, parms in model.named_parameters():
    print('name:', name)
    print('grad_requirs:', parms.requires_grad)
    print('grad_value:', parms.grad)

以下为错误输入,输入的size是[4,1],target的size是[4]: 

 ===
name: module.linear1.bias
grad_requirs: True
grad_value: tensor([-0.1339,  0.0000,  0.0505,  0.0219, -0.1498,  0.0265, -0.0604, -0.0385,
         0.0471,  0.0000,  0.0304,  0.0000,  0.0000,  0.0406,  0.0066,  0.0000,
        -0.0259, -0.1544,  0.0000, -0.0208,  0.0050,  0.0000,  0.0625, -0.0474,
         0.0000,  0.0858, -0.0116,  0.0777,  0.0000, -0.0828,  0.0000, -0.1265],
       device='cuda:0')
===
name: module.linear2.weight
grad_requirs: True
grad_value: tensor([[-0.9879, -0.0000, -1.0088, -0.1680, -0.7312, -0.0066, -0.3093, -0.7478,
         -0.3104, -0.0000, -0.1615, -0.0000, -0.0000, -0.3162, -0.1047, -0.0000,
         -0.4030, -0.3385, -0.0000, -0.1738, -0.0831, -0.0000, -0.3490, -0.1129,
         -0.0000, -0.8220, -0.0279, -0.3754, -0.0000, -0.3566, -0.0000, -0.5950]],
       device='cuda:0')
===
name: module.linear2.bias
grad_requirs: True
grad_value: tensor([-1.], device='cuda:0')
===

以下为正确输入,输入的size是[4],target的size是[4]得到的梯度: 

 ===
name: module.linear1.bias
grad_requirs: True
grad_value: tensor([-0.1351,  0.0000,  0.0000,  0.0000, -0.0377,  0.0000, -0.0809, -0.0394,
         0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0202,  0.0098, -0.0365,
        -0.0263, -0.2063, -0.1533, -0.0626,  0.0050,  0.0000,  0.0000, -0.0950,
         0.0000,  0.0000, -0.0348,  0.0000,  0.0000, -0.1108, -0.0402, -0.1693],
       device='cuda:0')
===
name: module.linear2.weight
grad_requirs: True
grad_value: tensor([[-7.4419,  0.0000,  0.0000,  0.0000, -1.9245,  0.0000, -2.7927, -2.4551,
          0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -0.0309, -0.4843, -0.0211,
         -1.7046, -7.7090, -0.1696, -0.9997, -0.0862,  0.0000,  0.0000, -2.0397,
          0.0000,  0.0000, -0.3125,  0.0000,  0.0000, -3.9532, -0.0643, -6.5799]],
       device='cuda:0')
===
name: module.linear2.bias
grad_requirs: True
grad_value: tensor([-1.], device='cuda:0')
===

果然,梯度值不一样!!!经验教训:每一行代码都要深入理解其作用的机理,不要想当然!

你可能感兴趣的:(深度学习,python,pytorch,深度学习,机器学习)