ElasticSearch常见面试题汇总

一、ElasticSearch基础:

1、什么是Elasticsearch:

Elasticsearch 是基于 Lucene 的 Restful 的分布式实时全文搜索引擎,每个字段都被索引并可被搜索,可以快速存储、搜索、分析海量的数据。

全文检索是指对每一个词建立一个索引,指明该词在文章中出现的次数和位置。当查询时,根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。

2、Elasticsearch 的基本概念:

(1)index 索引:索引类似于mysql 中的数据库,Elasticesearch 中的索引是存在数据的地方,包含了一堆有相似结构的文档数据。

(2)type 类型:类型是用来定义数据结构,可以认为是 mysql 中的一张表,type 是 index 中的一个逻辑数据分类

(3)document 文档:类似于 MySQL 中的一行,不同之处在于 ES 中的每个文档可以有不同的字段,但是对于通用字段应该具有相同的数据类型,文档是es中的最小数据单元,可以认为一个文档就是一条记录。

(4)Field 字段:Field是Elasticsearch的最小单位,一个document里面有多个field

(5)shard 分片:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。

(6)replica 副本:任何一个服务器随时可能故障或宕机,此时 shard 可能会丢失,因此可以为每个 shard 创建多个 replica 副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个 shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。

3、什么是倒排索引:

在搜索引擎中,每个文档都有一个对应的文档 ID,文档内容被表示为一系列关键词的集合。例如,某个文档经过分词,提取了 20 个关键词,每个关键词都会记录它在文档中出现的次数和出现位置。那么,倒排索引就是 关键词到文档 ID 的映射,每个关键词都对应着一系列的文件,这些文件中都出现了该关键词。有了倒排索引,搜索引擎可以很方便地响应用户的查询。

要注意倒排索引的两个重要细节:

  • 倒排索引中的所有词项对应一个或多个文档
  • 倒排索引中的词项 根据字典顺序升序排列

4、DocValues的作用:

倒排索引也是有缺陷的,假如我们需要对数据做一些聚合操作,比如排序/分组时,lucene内部会遍历提取所有出现在文档集合的排序字段,然后再次构建一个最终的排好序的文档集合list,这个步骤的过程全部维持在内存中操作,而且如果排序数据量巨大的话,非常容易就造成solr内存溢出和性能缓慢。

DocValues 就是 es 在构建倒排索引的同时,构建了正排索引,保存了docId到各个字段值的映射,可以看作是以文档为维度,从而实现根据指定字段进行排序和聚合的功能。

另外doc Values 保存在操作系统的磁盘中,当docValues大于节点的可用内存,ES可以从操作系统页缓存中加载或弹出,从而避免发生内存溢出的异常,docValues远小于节点的可用内存,操作系统自然将所有Doc Values存于内存中(堆外内存),有助于快速访问。

5、text 和 keyword类型的区别:

两个的区别主要分词的区别:keyword 类型是不会分词的,直接根据字符串内容建立倒排索引,keyword类型的字段只能通过精确值搜索到;Text 类型在存入 Elasticsearch 的时候,会先分词,然后根据分词后的内容建立倒排索引

6、什么是停顿词过滤:

停顿词可以看成是没有意义的词,比如“的”、“而”,这类词没有必要建立索引

7、query 和 filter 的区别?

(1)query:查询操作不仅仅会进行查询,还会计算分值,用于确定相关度;

(2)filter:查询操作仅判断是否满足查询条件,不会计算任何分值,也不会关心返回的排序问题,同时,filter 查询的结果可以被缓存,提高性能。

二、ES的写入流程:

1、es 写数据的过程:

ElasticSearch常见面试题汇总_第1张图片

(1)客户端选择一个 node 发送请求过去,这个 node 就是 coordinating node (协调节点)

(2)coordinating node 对 document 进行路由,将请求转发给对应的 node(有 primary shard)

(3)实际的 node 上的 primary shard 处理请求,然后将数据同步到 replica node

(4)coordinating node 等到 primary node 和所有 replica node 都执行成功之后,就返回响应结果给客户端。

2、写数据的底层原理:

ElasticSearch常见面试题汇总_第2张图片

(1)数据先写入 memory buffer,然后定时(默认每隔1s)将 memory buffer 中的数据写入一个新的 segment 文件中,并进入 Filesystem cache(同时清空 memory buffer),这个过程就叫做 refresh;

ES 的近实时性:数据存在 memory buffer 时是搜索不到的,只有数据被 refresh 到 Filesystem cache 之后才能被搜索到,而 refresh 是每秒一次, 所以称 es 是近实时的,可以通过手动调用 es 的 api 触发一次 refresh 操作,让数据马上可以被搜索到;

(2)由于 memory Buffer 和 Filesystem Cache 都是基于内存,假设服务器宕机,那么数据就会丢失,所以 ES 通过 translog 日志文件来保证数据的可靠性,在数据写入 memory buffer 的同时,将数据写入 translog 日志文件中,在机器宕机重启时,es 会自动读取 translog 日志文件中的数据,恢复到 memory buffer 和 Filesystem cache 中去。

ES 数据丢失的问题:translog 也是先写入 Filesystem cache,然后默认每隔 5 秒刷一次到磁盘中,所以默认情况下,可能有 5 秒的数据会仅仅停留在 memory buffer 或者 translog 文件的 Filesystem cache中,而不在磁盘上,如果此时机器宕机,会丢失 5 秒钟的数据。也可以将 translog 设置成每次写操作必须是直接 fsync 到磁盘,但是性能会差很多。

(3)flush 操作:不断重复上面的步骤,translog 会变得越来越大,当 translog 文件默认每30分钟或者 阈值超过 512M 时,就会触发 commit 操作,即 flush操作。

  • 将 buffer 中的数据 refresh 到 Filesystem Cache 中去,清空 buffer;
  • 创建一个新的 commit point(提交点),同时强行将 Filesystem Cache 中目前所有的数据都 fsync 到磁盘文件中;
  • 删除旧的 translog 日志文件并创建一个新的 translog 日志文件,此时 commit 操作完成

三、ES的更新和删除流程:

删除和更新都是写操作,但是由于 Elasticsearch 中的文档是不可变的,因此不能被删除或者改动以展示其变更;所以 ES 利用 .del 文件 标记文档是否被删除,磁盘上的每个段都有一个相应的.del 文件

(1)如果是删除操作,文档其实并没有真的被删除,而是在 .del 文件中被标记为 deleted 状态。该文档依然能匹配查询,但是会在结果中被过滤掉。

(2)如果是更新操作,就是将旧的 doc 标识为 deleted 状态,然后创建一个新的 doc。

memory buffer 每 refresh 一次,就会产生一个 segment 文件 ,所以默认情况下是 1s 生成一个 segment 文件,这样下来 segment 文件会越来越多,此时会定期执行 merge。

每次 merge 的时候,会将多个 segment 文件合并成一个,同时这里会将标识为 deleted 的 doc 给物理删除掉,不写入到新的 segment 中,然后将新的 segment 文件写入磁盘,这里会写一个 commit point ,标识所有新的 segment 文件,然后打开 segment 文件供搜索使用,同时删除旧的 segment 文件

四、ES的搜索流程:

搜索被执行成一个两阶段过程,即 Query Then Fetch:

1、Query阶段:

客户端发送请求到 coordinate node,协调节点将搜索请求广播到所有的 primary shard 或 replica shard。每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的优先队列。每个分片返回各自优先队列中 所有文档的 ID 和排序值 给协调节点,由协调节点及逆行数据的合并、排序、分页等操作,产出最终结果。

2、Fetch阶段:

协调节点根据 doc id 去各个节点上查询实际的 document 数据,由协调节点返回结果给客户端。

  • coordinate node 对 doc id 进行哈希路由,将请求转发到对应的 node,此时会使用 round-robin 随机轮询算法,在 primary shard 以及其所有 replica 中随机选择一个,让读请求负载均衡。
  • 接收请求的 node 返回 document 给 coordinate node 。
  • coordinate node 返回 document 给客户端。

Query Then Fetch 的搜索类型在文档相关性打分的时候参考的是本分片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch 增加了一个预查询的处理,询问 Term 和 Document frequency,这个评分更准确,但是性能会变差。

推荐:Java进阶视频资源

五、ES在高并发下如何保证读写一致性?

(1)对于更新操作:可以通过版本号使用乐观并发控制,以确保新版本不会被旧版本覆盖

每个文档都有一个_version 版本号,这个版本号在文档被改变时加一。Elasticsearch使用这个 _version 保证所有修改都被正确排序。当一个旧版本出现在新版本之后,它会被简单的忽略。

利用_version的这一优点确保数据不会因为修改冲突而丢失。比如指定文档的version来做更改。如果那个版本号不是现在的,我们的请求就失败了。

(2)对于写操作,一致性级别支持 quorum/one/all,默认为 quorum,即只有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络等原因导致写入副本失败,这样该副本被认为故障,分片将会在一个不同的节点上重建。

  • one:要求我们这个写操作,只要有一个primary shard是active活跃可用的,就可以执行
  • all:要求我们这个写操作,必须所有的primary shard和replica shard都是活跃的,才可以执行这个写操作
  • quorum:默认的值,要求所有的shard中,必须是大部分的shard都是活跃的,可用的,才可以执行这个写操作

(3)对于读操作,可以设置 replication 为 sync(默认),这使得操作在主分片和副本分片都完成后才会返回;如果设置replication 为 async 时,也可以通过设置搜索请求参数_preference 为 primary 来查询主分片,确保文档是最新版本。

六、ES如何选举Master节点:

1、Elasticsearch 的分布式原理:

Elasticsearch 会对存储的数据进行切分,将数据划分到不同的分片上,同时每一个分片会保存多个副本,主要是为了保证分布式环境的高可用。在 Elasticsearch 中,节点是对等的,节点间会选取集群的 Master,由 Master 会负责集群状态信息的改变,并同步给其他节点。

Elasticsearch 的性能会不会很低:只有建立索引和类型需要经过 Master,数据的写入有一个简单的 Routing 规则,可以路由到集群中的任意节点,所以数据写入压力是分散在整个集群的。

2、Elasticsearch 如何 选举 Master:

Elasticsearch 的选主是 ZenDiscovery 模块负责的,主要包含Ping(节点之间通过这个RPC来发现彼此)和 Unicast(单播模块包含一个主机列表以控制哪些节点需要ping通)这两部分;

  • 确认候选主节点的最少投票通过数量,elasticsearch.yml 设置的值 discovery.zen.minimum_master_nodes;
  • 对所有候选 master 的节点(node.master: true)根据 nodeId 字典排序,每次选举每个节点都把自己所知道节点排一次序,然后选出第一个(第0位)节点,暂且认为它是master节点。
  • 如果对某个节点的投票数达到阈值,并且该节点自己也选举自己,那这个节点就是master。否则重新选举一直到满足上述条件。

补充:master节点的职责主要包括集群、节点和索引的管理,不负责文档级别的管理;data节点可以关闭http功能。

3、Elasticsearch是如何避免脑裂现象:

(1)当集群中 master 候选节点数量不小于3个时(node.master: true),可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes),设置超过所有候选节点一半以上来解决脑裂问题,即设置为 (N/2)+1

(2)当集群 master 候选节点 只有两个时,这种情况是不合理的,最好把另外一个node.master改成false。如果我们不改节点设置,还是套上面的(N/2)+1公式,此时discovery.zen.minimum_master_nodes应该设置为2。这就出现一个问题,两个master备选节点,只要有一个挂,就选不出master了

推荐:Java进阶视频资源

七、建立索引阶段性能提升方法:

(1)使用 SSD 存储介质

(2)使用批量请求并调整其大小:每次批量数据 5–15 MB 大是个不错的起始点。

(3)如果你在做大批量导入,考虑通过设置 index.number_of_replicas: 0 关闭副本

(4)如果你的搜索结果不需要近实时的准确度,考虑把每个索引的 index.refresh_interval 改到30s

(5)段和合并:Elasticsearch 默认值是 20 MB/s。但如果用的是 SSD,可以考虑提高到 100–200 MB/s。如果你在做批量导入,完全不在意搜索,你可以彻底关掉合并限流。

(6)增加 index.translog.flush_threshold_size 设置,从默认的 512 MB 到更大一些的值,比如 1 GB

八、ES的深度分页与滚动搜索scroll

(1)深度分页:

深度分页其实就是搜索的深浅度,比如第1页,第2页,第10页,第20页,是比较浅的;第10000页,第20000页就是很深了。搜索得太深,就会造成性能问题,会耗费内存和占用cpu。而且es为了性能,他不支持超过一万条数据以上的分页查询。

那么如何解决深度分页带来的问题,我们应该避免深度分页操作(限制分页页数),比如最多只能提供100页的展示,从第101页开始就没了,毕竟用户也不会搜的那么深。

(2)滚动搜索:

一次性查询1万+数据,往往会造成性能影响,因为数据量太多了。这个时候可以使用滚动搜索,也就是 scroll。滚动搜索可以先查询出一些数据,然后再紧接着依次往下查询。

那么如何解决深度分页带来的问题,我们应该避免深度分页操作(限制分页页数),比如最多只能提供100页的展示,从第101页开始就没了,毕竟用户也不会搜的那么深。

(2)滚动搜索:

一次性查询1万+数据,往往会造成性能影响,因为数据量太多了。这个时候可以使用滚动搜索,也就是 scroll。滚动搜索可以先查询出一些数据,然后再紧接着依次往下查询。

在第一次查询的时候会有一个滚动id,相当于一个锚标记 ,随后再次滚动搜索会需要上一次搜索滚动id,根据这个进行下一次的搜索请求。每次搜索都是基于一个历史的数据快照,查询数据的期间,如果有数据变更,那么和搜索是没有关系的。

关于ElasticSearch常见面试题,你学废了么?


你可能感兴趣的:(elasticsearch)