最近搞一个人脸识别的项目练练手,opencv做人脸检测实在是强!!!
检测算法由haar特征算法实现
haar特征是一种很简单的算法,有很多实现的方式,下面几种很常见的haar特征计算方法 : A,B 俩矩阵特征,C三矩阵特征,D对角矩阵特征
很通俗的来说,haar算法计算特征就是用一块区域内黑色的值减去白色的值。但是一张图片像素点是非常多的,如果用普通的方法去计算一块区域的值,效率相当低下。
这里有一种加速计算的方法--积分图:
定义如下:
积分图每一点(x,y)都是这个点对应左上角区域所有值的和
并且只需要遍历一遍图像就可得到积分图。
而对于任意一点(x,y) 积分图可这样计算 I(x,y)= i(x,y)+I(x-1,y)+I(x,y-1)-I(x-1,y-1)
利用积分图就可以很高效的计算出图像中的特征区域。
我这里用的是已经训练好的haar级联分类器。
眼睛检测 haarcascade_eye_tree_eyeglasses.xml
人脸检测 haarcascade_frontalface_alt2.xml
检测思路:
先把图片转为灰度,接着将图片直方均匀化,在上面处理后的图片矩阵中检测脸的区域,然后把脸这一块圈出来去检测眼睛。
检测函数代码如下:
void DetectFace(Mat img,Mat imgGray) {
namedWindow("src", WINDOW_AUTOSIZE);
vector faces, eyes;
faceCascade.detectMultiScale(imgGray, faces, 1.2, 5, 0, Size(30, 30));
for (auto b : faces) {
cout << "输出一张人脸位置:(x,y):" << "(" << b.x << "," << b.y << ") , (width,height):(" << b.width << "," << b.height << ")" << endl;
}
if (faces.size()>0) {
for (size_t i = 0; i
putText(img, "ugly man!", cvPoint(faces[i].x, faces[i].y - 10), FONT_HERSHEY_PLAIN, 2.0, Scalar(0, 0, 255));
rectangle(img, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(0, 0, 255), 1, 8);
cout << faces[i] << endl;
//将人脸从灰度图中抠出来
Mat face_ = imgGray(faces[i]);
eyes_Cascade.detectMultiScale(face_, eyes, 1.2, 2, 0, Size(30, 30));
for (size_t j = 0; j < eyes.size(); j++) {
Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
circle(img, eye_center, radius, Scalar(65, 105, 255), 4, 8, 0);
}
}
}
imshow("src", img);
}
最后检测效果:
全部代码如下:
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
void DetectFace(Mat,Mat);
CascadeClassifier faceCascade;
CascadeClassifier eyes_Cascade;
int main(int argc, char** argv) {
VideoCapture cap;
if (!cap.open(0)) {
cout << "摄像头打开失败!!" << endl;
return -1;
}
if (!faceCascade.load("C:\\Users\\cb\\source\\repos\\Project2\\x64\\Debug\\haarcascade_frontalface_alt2.xml") ) {
cout << "人脸检测级联分类器没找到!!" << endl;
return -1;
}
if (!eyes_Cascade.load("C:\\Users\\cb\\source\\repos\\Project2\\x64\\Debug\\haarcascade_eye_tree_eyeglasses.xml")) {
cout << "眼睛检测级联分类器没找到!!" << endl;
return -1;
}
Mat img, imgGray;
int fps = 60;
while (true) {
cap >> img;
cvtColor(img, imgGray, CV_BGR2GRAY);
equalizeHist(imgGray, imgGray);//直方图均匀化
DetectFace(img, imgGray);
waitKey(1000/fps);
}
return 0;
}
void DetectFace(Mat img,Mat imgGray) {
namedWindow("src", WINDOW_AUTOSIZE);
vector faces, eyes;
faceCascade.detectMultiScale(imgGray, faces, 1.2, 5, 0, Size(30, 30));
for (auto b : faces) {
cout << "输出一张人脸位置:(x,y):" << "(" << b.x << "," << b.y << ") , (width,height):(" << b.width << "," << b.height << ")" << endl;
}
if (faces.size()>0) {
for (size_t i = 0; i
putText(img, "ugly girl!", cvPoint(faces[i].x, faces[i].y - 10), FONT_HERSHEY_PLAIN, 2.0, Scalar(0, 0, 255));
rectangle(img, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(0, 0, 255), 1, 8);
cout << faces[i] << endl;
//将人脸从灰度图中抠出来
Mat face_ = imgGray(faces[i]);
eyes_Cascade.detectMultiScale(face_, eyes, 1.2, 2, 0, Size(30, 30));
for (size_t j = 0; j < eyes.size(); j++) {
Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
circle(img, eye_center, radius, Scalar(65, 105, 255), 4, 8, 0);
}
}
}
imshow("src", img);
}
代码和分类器都已经上传,有需要的朋友可以下载。