从 200 多篇顶会论文看预训练语言模型研究进展

每天给你送来NLP技术干货!


作者|王晓磊

机构|中国人民大学高瓴人工智能学院博士一年级 

导师|赵鑫教授  

 方向 | 对话系统和预训练模型 

来自 | RUC AI Box

近年来,以 BERT 和 GPT 系列为代表的大规模预训练语言模型(Pre-trained Language Model, PLM)在 NLP 的各个领域取得了巨大成功。本文整理了自 BERT 和 GPT 诞生以来与 PLM 相关的论文,根据引用数筛选出其中一些具有代表性的工作和 2021 年在各大顶会(ACL、EMNLP、ICLR、ICML、NeurIPS 等)发表的工作,共计 285 篇,按照综述、基准数据集、PLM 的设计、PLM 的分析、高效的 PLM 和 PLM 的使用这 6 个大类 22 个小类进行了划分。

本文整理的论文列表已经同步更新到 GitHub,GitHub 上会持续更新顶会论文,欢迎大家关注和 Star。

https://github.com/RUCAIBox/PLMPapers

本文按照综述、基准数据集、PLM 的设计、PLM 的分析、高效的 PLM 和 PLM 的使用这 6 个大类 22 个小类进行了划分:

 · 1 综述· 

 · 2 基准数据集· 

 · 3 PLM 的设计· 

  • 通用设计

  • 知识增强

  • 多语言

  • 多模态

  • 信息检索

  • 代码

  • 其他

 · 4 PLM 的分析· 

  • 知识

  • 鲁棒性

  • 稀疏性

  • 其他

 · 5 高效的 PLM· 

  • 模型训练

  • 模型推理

  • 模型压缩

 · 6 PLM 的使用· 

  • 两阶段微调

  • 多任务微调

  • Adapter

  • Prompt

  • 其他

01

综述

  1. "Pre-trained models for natural language processing: A survey". Science China Technological Sciences(2020) [PDF]

  2. "Which *BERT? A Survey Organizing Contextualized Encoders". EMNLP(2020) [PDF]

  3. "A Primer in BERTology: What We Know About How BERT Works". TACL(2020) [PDF]

  4. "From static to dynamic word representations: a survey". International Journal of Machine Learning and Cybernetics(2020) [PDF]

  5. "Overview of the Transformer-based Models for NLP Tasks". 2020 15th Conference on Computer Science and Information Systems (FedCSIS) [PDF]

  6. "A Survey on Contextual Embeddings". arXiv(2020) [PDF]

  7. "The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures". IEEE Access(2021) [PDF]

  8. "Pre-Trained Models: Past, Present and Future". arXiv(2021) [PDF]

  9. "Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing". arXiv(2021) [PDF]

  10. "AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing". arXiv(2021) [PDF]

  11. "On the Opportunities and Risks of Foundation Models". arXiv(2021) [PDF]

  12. "Paradigm Shift in Natural Language Processing". arXiv(2021) [PDF]

  13. "Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey". arXiv(2021) [PDF]

02

基准数据集

  1. XNLI: "XNLI: Evaluating Cross-lingual Sentence Representations". EMNLP(2018) [PDF] [Dataset]

  2. GLUE: "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding". ICLR(2019) [Homepage]

  3. SuperGLUE: "SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems". NeurIPS(2019) [Homepage]

  4. CLUE: "CLUE: A Chinese Language Understanding Evaluation Benchmark". COLING(2020) [Homepage]

  5. XTREME: "XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization". ICML(2020) [Homepage]

  6. XGLUE: "XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation". EMNLP(2020) [Homepage]

  7. DialoGLUE: "DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented Dialogue". arXiv(2020) [Homepage]

03

PLM 的设计

3.1 通用设计

  1. GPT: "Improving Language Understanding by Generative Pre-Training". OpenAI(2018) [Project]

  2. GPT-2: "Language Models are Unsupervised Multitask Learners". OpenAI(2019) [Project]

  3. BERT: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". NAACL(2019) [PDF] [Code]

  4. XLNet: "XLNet: Generalized Autoregressive Pretraining for Language Understanding". NeurIPS(2019) [PDF] [Code]

  5. SBERT: "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks". ACL(2019) [PDF] [Code]

  6. UniLM: "Unified Language Model Pre-training for Natural Language Understanding and Generation". NeurIPS(2019) [PDF] [Code]

  7. MASS: "MASS: Masked Sequence to Sequence Pre-training for Language Generation". ICML(2019) [PDF] [Code]

  8. Chinese-BERT-wwm: "Pre-Training with Whole Word Masking for Chinese BERT". arXiv(2019) [PDF] [Code]

  9. "Cloze-driven Pretraining of Self-attention Networks". EMNLP(2019) [PDF]

  10. "BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model". Workshop on Methods for Optimizing and Evaluating Neural Language Generation(2019) [PDF] [Code]

  11. GPT-3: "Language Models are Few-Shot Learners". NeurIPS(2020) [PDF] [Code]

  12. T5: "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". JMLR(2020) [PDF] [Code]

  13. BART: "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension". ACL(2020) [PDF] [Code]

  14. Poly-encoders: "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring". ICLR(2020) [PDF]

  15. SpanBERT: "SpanBERT: Improving Pre-training by Representing and Predicting Spans". TACL(2020) [PDF] [Code]

  16. ERNIE 2.0: "ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding". AAAI(2020) [PDF] [Code]

  17. SemBERT: "Semantics-Aware BERT for Language Understanding". AAAI(2020) [PDF] [Code]

  18. "Leveraging Pre-trained Checkpoints for Sequence Generation Tasks". TACL(2020) [PDF] [Code]

  19. ProphetNet: "ProphetNet: Predicting Future N-gram for Sequence-to-SequencePre-training". EMNLP(2020) [PDF]

  20. UniLMv2: "UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training". ICML(2020) [PDF] [Code]

  21. MacBERT: "Revisiting Pre-Trained Models for Chinese Natural Language Processing". EMNLP(2020) [PDF] [Code]

  22. MPNet: "MPNet: Masked and Permuted Pre-training for Language Understanding". arXiv(2020) [PDF] [Code]

  23. DEBERTA: "DeBERTa: Decoding-enhanced BERT with Disentangled Attention". ICLR(2021) [PDF] [Code]

  24. PALM: "PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation". EMNLP(2020) [PDF]

  25. Optimus: "Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space". EMNLP(2020) [PDF] [Code]

  26. "Self-training Improves Pre-training for Natural Language Understanding". NAACL(2021) [PDF] [Code]

  27. CAPT: "Rethinking Denoised Auto-Encoding in Language Pre-Training". EMNLP(2021) [PDF]

  28. "Frustratingly Simple Pretraining Alternatives to Masked Language Modeling". EMNLP(2021) [PDF] [Code]

  29. "Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models". ACL(2021) [PDF] [Code]

  30. ERNIE-Doc: "ERNIE-Doc: A Retrospective Long-Document Modeling Transformer". ACL(2021) [PDF] [Code]

  31. "Pre-training Universal Language Representation". ACL(2021) [PDF] [Code]

3.2 知识增强

  1. ERNIE(Baidu): "ERNIE: Enhanced Representation through Knowledge Integration". arXiv(2019) [PDF] [Code]

  2. KnowBert: "Knowledge Enhanced Contextual Word Representations". EMNLP(2019) [PDF]

  3. ERNIE(Tsinghua): "ERNIE: Enhanced Language Representation with Informative Entities". ACL(2019) [PDF] [Code]

  4. COMET: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction". ACL(2019) [PDF] [Code]

  5. K-BERT: "K-BERT: Enabling Language Representation with Knowledge Graph". AAAI(2020) [PDF] [Code]

  6. WKLM: "Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model". ICLR(2020) [PDF]

  7. LUKE: "LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention". EMNLP(2020) [PDF] [Code]

  8. K-Adapter: "K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters". ICLR(2021) [PDF]

  9. KEPLER: "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation". TACL(2021) [PDF] [Code]

  10. RuleBERT: "RuleBERT: Teaching Soft Rules to Pre-Trained Language Models". EMNLP(2021) [PDF] [Code]

  11. BeliefBank: "Exploring the Role of BERT Token Representations to Explain Sentence Probing Results". EMNLP(2021) [PDF] [Code]

  12. Phrase-BERT: "Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration". EMNLP(2021) [PDF] [Code]

  13. "Syntax-Enhanced Pre-trained Model". ACL(2021) [PDF] [Code]

  14. StructFormer: "StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling". ACL(2021) [PDF]

  15. ERICA: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning". ACL(2021) [PDF] [Code]

  16. "Structural Guidance for Transformer Language Models". ACL(2021) [PDF] [Code]

  17. HORNET: "HORNET: Enriching Pre-trained Language Representations with Heterogeneous Knowledge Sources". CIKM(2021) [PDF]

  18. "Drop Redundant, Shrink Irrelevant: Selective Knowledge Injection for Language Pretraining". IJCAI(2021) [PDF]

3.3 多语言

  1. XLM: "Cross-lingual Language Model Pretraining". arXiv(2019) [PDF] [Code]

  2. "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond". TACL(2019) [PDF] [Code]

  3. UDify: "75 Languages, 1 Model: Parsing Universal Dependencies Universally". EMNLP(2019) [PDF] [Code]

  4. Unicoder: "Unicoder: A Universal Language Encoder by Pre-training with Multiple Cross-lingual Tasks". EMNLP(2019) [PDF]

  5. XLM-R: "Unsupervised Cross-lingual Representation Learning at Scale". ACL(2020) [PDF]

  6. "Multilingual Alignment of Contextual Word Representations". ICLR(2020) [PDF]

  7. mBART: "Multilingual Denoising Pre-training for Neural Machine Translation". TACL(2020) [PDF] [Code]

  8. mT5: "mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer". NAACL(2021) [PDF] [Code]

  9. InfoXLM: "InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training". NAACL(2021) [PDF] [Code]

  10. "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training". EMNLP(2021) [PDF] [Code]

  11. ERNIE-M: "ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora". EMNLP(2021) [PDF] [Code]

  12. "A Simple Geometric Method for Cross-Lingual Linguistic Transformations with Pre-trained Autoencoders". EMNLP(2021) [PDF]

  13. "Boosting Cross-Lingual Transfer via Self-Learning with Uncertainty Estimation". EMNLP(2021) [PDF]

  14. "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models". ACL(2021) [PDF] [Code]

  15. "Multilingual Pre-training with Universal Dependency Learning". NeurIPS(2021) [PDF]

3.4 多模态

  1. ViLBERT: "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks". NeuralIPS(2019) [PDF]

  2. LXMERT: "LXMERT: Learning Cross-Modality Encoder Representations from Transformers". EMNLP(2019) [PDF] [Code]

  3. VideoBERT: "VideoBERT: A Joint Model for Video and Language Representation Learning" ICCV(2019) [PDF]

  4. VisualBERT: "VisualBERT: A Simple and Performant Baseline for Vision and Language". arXiv(2019) [PDF]

  5. B2T2: "Fusion of Detected Objects in Text for Visual Question Answering". EMNLP(2019) [PDF] [Code]

  6. VL-BERT: "VL-BERT: Pre-training of Generic Visual-Linguistic Representations". ICLR(2020) [PDF] [Code]

  7. Unicoder-VL: "Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training". AAAI(2020) [PDF]

  8. VLP: "Unified Vision-Language Pre-Training for Image Captioning and VQA". AAAI(2020) [PDF] [Code]

  9. UNITER: "UNITER: UNiversal Image-TExt Representation Learning". ECCV(2020) [PDF] [Code]

  10. Oscar: "Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks". ECCV(2020) [PDF] [Code]

  11. "12-in-1: Multi-Task Vision and Language Representation Learning". CVPR(2020) [PDF] [Code]

  12. ActBERT: "ActBERT: Learning Global-Local Video-Text Representations". CVPR(2020) [PDF]

  13. VLN: "Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks". CVPR(2020) [PDF]

  14. VILLA: "Large-Scale Adversarial Training for Vision-and-Language Representation Learning". arXiv(2020) [PDF] [Code]

  15. ImageBERT: "ImageBERT: Cross-modal Pre-training with Large-scale Weak-supervised Image-Text Data". arXiv(2020) [PDF]

  16. ALIGN: "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision". ICML(2021) [PDF]

  17. ClipBERT: "Less Is More: ClipBERT for Video-and-Language Learning via Sparse Sampling". CVPR(2021) [PDF] [Code]

  18. DALL·E: "Zero-Shot Text-to-Image Generation". arXiv(2021) [PDF] [Code]

  19. CLIP: "Learning Transferable Visual Models From Natural Language Supervision". arXiv(2021) [PDF] [Code]

  20. IPT: "Pre-Trained Image Processing Transformer". CVPR(2021) [PDF] [Code]

  21. CvT: "CvT: Introducing Convolutions to Vision Transformers". ICCV(2021) [PDF] [Code]

  22. "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision". ICML(2021) [PDF]

  23. TERA: "TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech". TASLP(2021) [PDF] [Code]

  24. CaiT: "Going deeper with Image Transformers". ICCV(2021) [PDF] [Code]

  25. ViViT: "ViViT: A Video Vision Transformer". ICCV(2021) [PDF] [Code]

  26. VirTex: "VirTex: Learning Visual Representations From Textual Annotations". CVPR(2021) [PDF] [Code]

  27. M6: "M6: Multi-Modality-to-Multi-Modality Multitask Mega-transformer for Unified Pretraining". KDD(2021) [PDF]

  28. "Probing Inter-modality: Visual Parsing with Self-Attention for Vision-and-Language Pre-training". NeurIPS(2021) [PDF]

  29. GilBERT: "GilBERT: Generative Vision-Language Pre-Training for Modality-Incomplete Visual-Linguistic Tasks". SIGIR(2021) [PDF]

3.5 信息检索

  1. ORQA: "Latent Retrieval for Weakly Supervised Open Domain Question Answering". ACL(2019) [PDF]

  2. REALM: "REALM: Retrieval-Augmented Language Model Pre-Training". arXiv(2020) [PDF]

  3. RAG: "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". NeurIPS(2020) [PDF] [Code]

  4. DPR: "Dense Passage Retrieval for Open-Domain Question Answering". EMNLP(2020) [PDF] [Code]

  5. "Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering". EACL(2021) [PDF] [Code]

3.6 代码

  1. CodeT5: "CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation". EMNLP(2021) [PDF] [Code]

  2. Codex: "Evaluating Large Language Models Trained on Code". arXiv(2021) [PDF] [Code]

3.7 其他

 
  1. ReasonBERT: "ReasonBERT: Pre-trained to Reason with Distant Supervision". EMNLP(2021) [PDF] [Code]

  2. "Sentence Bottleneck Autoencoders from Transformer Language Models". EMNLP(2021) [PDF] [Code]

  3. "Numeracy enhances the Literacy of Language Models". EMNLP(2021) [PDF] [Code]

  4. EnsLM: "EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering". ACL(2021) [PDF] [Code]

  5. "Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models". ACL(2021) [PDF] [Code]

  6. BERTAC: "BERTAC: Enhancing Transformer-based Language Models with Adversarially Pretrained Convolutional Neural Networks". ACL(2021) [PDF] [Code]

  7. "Natural Language Understanding with Privacy-Preserving BERT". CIKM(2021) [PDF]

  8. BANG: "BANG: Bridging Autoregressive and Non-autoregressive Generation with Large Scale Pretraining". ICML(2021) [PDF] [Code]

04

PLM 的分析

4.1 知识

  1. "What Does BERT Look at? An Analysis of BERT’s Attention". BlackBoxNLP(2019) [PDF] [Code]

  2. "BERT Rediscovers the Classical NLP Pipeline". ACL(2019) [PDF]

  3. "How Multilingual is Multilingual BERT?". ACL(2019) [PDF]

  4. "A Structural Probe for Finding Syntax in Word Representations". NAACL(2019) [PDF] [Code]

  5. "Language Models as Knowledge Bases?". EMNLP(2019) [PDF] [Code]

  6. "What Does BERT Learn about the Structure of Language?". ACL(2019) [PDF] [Code]

  7. "Linguistic Knowledge and Transferability of Contextual Representations". NAACL(2019) [PDF]

  8. "Assessing BERT's Syntactic Abilities". arXiv(2019) [PDF] [Code]

  9. "Probing Neural Network Comprehension of Natural Language Arguments" ACL(2019) [PDF]

  10. "How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings". EMNLP(2019) [PDF]

  11. "Visualizing and Measuring the Geometry of BERT". NeurIPS(2019) [PDF]

  12. "Designing and Interpreting Probes with Control Tasks". EMNLP(2019) [PDF]

  13. "Open Sesame: Getting inside BERT’s Linguistic Knowledge". BlackboxNLP(2019) [PDF] [Code]

  14. "What do you learn from context? Probing for sentence structure in contextualized word representations". ICLR(2019) [PDF] [Code]

  15. "Commonsense Knowledge Mining from Pretrained Models". EMNLP(2019) [PDF]

  16. "Do NLP Models Know Numbers? Probing Numeracy in Embeddings". EMNLP(2019) [PDF]

  17. "On the Cross-lingual Transferability of Monolingual Representations". ACL(2020) [PDF]

  18. "Cross-Lingual Ability of Multilingual BERT: An Empirical Study". ICLR(2020) [PDF] [Code]

  19. "What BERT Is Not: Lessons from a New Suite of Psycholinguistic Diagnostics for Language Models". TACL(2020) [PDF] [Code]

  20. "How Much Knowledge Can You Pack Into the Parameters of a Language Model?". EMNLP(2020) [PDF] [Code]

  21. "How Can We Know What Language Models Know?". TACL(2020) [PDF] [Code]

  22. "oLMpics-On What Language Model Pre-training Captures". TACL(2020) [PDF] [Code]

  23. "Information-Theoretic Probing with Minimum Description Length". EMNLP(2020) [PDF] [Code]

  24. "Inducing Relational Knowledge from BERT". AAAI(2020) [PDF]

  25. AutoPrompt: "AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts". EMNLP(2020) [PDF] [Code]

  26. "Emergent linguistic structure in artificial neural networks trained by self-supervision". PNAS(2020) [PDF]

  27. "Evaluating Commonsense in Pre-Trained Language Models". AAAI(2020) [PDF] [Code]

  28. "Inducing Relational Knowledge from BERT". AAAI(2020) [PDF]

  29. "Editing Factual Knowledge in Language Models". EMNLP(2021) [PDF] [Code]

  30. "How much pretraining data do language models need to learn syntax?". EMNLP(2021) [PDF]

  31. "Stepmothers are mean and academics are pretentious: What do pretrained language models learn about you?". EMNLP(2021) [PDF] [Code]

  32. "Putting Words in BERT's Mouth: Navigating Contextualized Vector Spaces with Pseudowords". EMNLP(2021) [PDF] [Code]

  33. "Frequency Effects on Syntactic Rule Learning in Transformers". EMNLP(2021) [PDF] [Code]

  34. "Exploring the Role of BERT Token Representations to Explain Sentence Probing Results". EMNLP(2021) [PDF] [Code]

  35. "How is BERT surprised? Layerwise detection of linguistic anomalies". ACL(2021) [PDF] [Code]

  36. "Implicit Representations of Meaning in Neural Language Model". ACL(2021) [PDF] [Code]

  37. "Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases". ACL(2021) [PDF] [Code]

4.2 鲁棒性

  1. "Universal Adversarial Triggers for Attacking and Analyzing NLP". EMNLP(2019) [PDF] [Code]

  2. "Pretrained Transformers Improve Out-of-Distribution Robustness". ACL(2020) [PDF] [Code]

  3. BERT-ATTACK: "BERT-ATTACK: Adversarial Attack Against BERT Using BERT". EMNLP(2020) [PDF] [Code]

  4. "Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment". AAAI(2020) [PDF] [Code]

  5. "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". EMNLP(2021) [PDF] [Code]

  6. "Sorting through the noe: Testing robustness of information processing in pre-trained language models". EMNLP(2021) [PDF] [Code]

4.3 稀疏性

  1. "Are Sixteen Heads Really Better than One?". NeurIPS(2019) [PDF] [Code]

  2. "Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned". ACL(2019) [PDF] [Code]

  3. "Revealing the Dark Secrets of BERT". EMNLP(2019) [PDF]

  4. "The Lottery Ticket Hypothesis for Pre-trained BERT Networks". NeurIPS(2020) [PDF] [Code]

  5. "When BERT Plays the Lottery, All Tickets Are Winning". EMNLP(2020) [PDF] [Code]

4.4 其他

  1. "Scaling Laws for Neural Language Models". arXiv(2020) [PDF]

  2. "Extracting Training Data from Large Language Models". arXiv(2020) [PDF] [Code]

  3. "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? ". FACCT(2021) [PDF]

  4. "Extracting Training Data from Large Language Models". USENIX(2021) [PDF] [Code]

  5. "Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little". EMNLP(2021) [PDF] [Code]

  6. "Effects of Parameter Norm Growth During Transformer Training: Inductive Bias from Gradient Descent". EMNLP(2021) [PDF] [Code]

  7. "Discretized Integrated Gradients for Explaining Language Models". EMNLP(2021) [PDF] [Code]

  8. "Do Long-Range Language Models Actually Use Long-Range Context?". EMNLP(2021) [PDF]

  9. "Surface Form Competition: Why the Highest Probability Answer Isn’t Always Right". EMNLP(2021) [PDF] [Code]

  10. "Incorporating Residual and Normalization Layers into Analysis of Masked Language Models". EMNLP(2021) [PDF] [Code]

  11. "Sequence Length is a Domain: Length-based Overfitting in Transformer Models". EMNLP(2021) [PDF]

  12. "Are Pretrained Convolutions Better than Pretrained Transformers?". ACL(2021) [PDF]

  13. "Positional Artefacts Propagate Through Masked Language Model Embeddings". ACL(2021) [PDF]

  14. "When Do You Need Billions of Words of Pretraining Data?". ACL(2021) [PDF] [Code]

  15. "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?". ACL(2021) [PDF] [Code]

  16. "Examining the Inductive Bias of Neural Language Models with Artificial Languages". ACL(2021) [PDF] [Code]

  17. "Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning". NeurIPS(2021) [PDF]

05

高效的 PLM

5.1 模型训练

  1. RoBERTa: "RoBERTa: A Robustly Optimized BERT Pretraining Approach". arXiv(2019) [PDF] [Code]

  2. "Efficient Training of BERT by Progressively Stacking". ICML(2019) [PDF] [Code]

  3. Megatron-LM: "Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism". arXiv(2019) [PDF] [Code]

  4. ELECTRA: "ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators". ICLR(2020) [PDF] [Code]

  5. "Large Batch Optimization for Deep Learning: Training BERT in 76 minutes". ICLR(2020) [PDF] [Code]

  6. GShard: "GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding". arXiv(2020) [PDF]

  7. Admin: "Understanding the Difficulty of Training Transformers". EMNLP(2020) [PDF] [Code]

  8. ZeRO: "ZeRO: Memory optimizations Toward Training Trillion Parameter Models". SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [PDF] [Code]

  9. Switch Transformers: "Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity". arXiv(2021) [PDF] [Code]

  10. "How to Train BERT with an Academic Budget". EMNLP(2021) [PDF]

  11. "Optimizing Deeper Transformers on Small Datasets". ACL(2021) [PDF] [Code]

  12. "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets". ACL(2021) [PDF] [Code]

5.2 模型推理

  1. "BERT Loses Patience: Fast and Robust Inference with Early Exit". NeurIPS(2020) [PDF] [Code]

  2. GAML-BERT: "GAML-BERT: Improving BERT Early Exiting by Gradient Aligned Mutual Learning". EMNLP(2021) [PDF]

  3. "Efficient Nearest Neighbor Language Models". EMNLP(2021) [PDF] [Code]

  4. GhostBERT: "GhostBERT: Generate More Features with Cheap Operations for BERT". ACL(2021) [PDF] [Code]

  5. LeeBERT: "LeeBERT: Learned Early Exit for BERT with cross-level optimization". ACL(2021) [PDF]

  6. "Length-Adaptive Transformer: Train Once with Length Drop, Use Anytime with Search". ACL(2021) [PDF] [Code]

  7. "Distilling Knowledge from BERT into Simple Fully Connected Neural Networks for Efficient Vertical Retrieval". CIKM(2021) [PDF]

5.3 模型压缩  

  1. DistilBERT: "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter". arXiv(2019) [PDF] [Code]

  2. PKD: "Patient Knowledge Distillation for BERT Model Compression". EMNLP(2019) [PDF] [Code]

  3. "Distilling Task-Specific Knowledge from BERT into Simple Neural Networks". arXiv(2019) [PDF]

  4. Q8BERT: "Q8BERT: Quantized 8Bit BERT". 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS 2019 [PDF]

  5. ALBERT: "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations". ICLR(2020) [PDF] [Code]

  6. TinyBERT: "TinyBERT: Distilling BERT for Natural Language Understanding". EMNLP(2020) [PDF] [Code]

  7. Layerdrop: "Reducing Transformer Depth on Demand with Structured Dropout". ICLR(2020) [PDF] [Code]

  8. Q-BERT: "Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT". AAAI(2020) [PDF]

  9. MobileBERT: "MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices". ACL(2020) [PDF] [Code]

  10. "Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning". 5th Workshop on Representation Learning for NLP(2020) [PDF] [Code]

  11. MiniLM: "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers". arXiv(2020) [PDF] [Code]

  12. FastBERT: "FastBERT: a Self-distilling BERT with Adaptive Inference Time". ACL(2020) [PDF] [Code]

  13. DeeBERT: "DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference". ACL(2020) [PDF] [Code]

  14. "Compressing Large-Scale Transformer-Based Models: A Case Study on BERT". TACL(2021) [PDF]

  15. "Winning the Lottery with Continuous Sparsification". NeurIPS(2020) [PDF] [Code]

  16. SqueezeBERT: "SqueezeBERT: What can computer vision teach NLP about efficient neural networks?". SustaiNLP(2020) [PDF]

  17. Audio ALBERT: "Audio Albert: A Lite Bert for Self-Supervised Learning of Audio Representation". SLT(2021) [PDF] [Code]

  18. T2R: "Finetuning Pretrained Transformers into RNNs". EMNLP(2021) [PDF] [Code]

  19. "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression". EMNLP(2021) [PDF] [Code]

  20. Meta-KD: "Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains". ACL(2021) [PDF] [Code]

  21. "Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization". ACL(2021) [PDF] [Code]

  22. BinaryBERT: "BinaryBERT: Pushing the Limit of BERT Quantization". ACL(2021) [PDF] [Code]

  23. AutoTinyBERT: "AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained Language Models". ACL(2021) [PDF] [Code]

  24. "Marginal Utility Diminishes: Exploring the Minimum Knowledge for BERT Knowledge Distillation". ACL(2021) [PDF] [Code]

  25. "Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators". ACL(2021) [PDF] [Code]

  26. NAS-BERT: "NAS-BERT: Task-Agnostic and Adaptive-Size BERT Compression with Neural Architecture Search". KDD(2021) [PDF]

06

PLM 的使用

6.1 两阶段微调  

  1. "Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks". arXiv(2018) [PDF] [Code]

  2. "How to Fine-Tune BERT for Text Classification?". CCL(2019) [PDF]

  3. "Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks". ACL(2020) [PDF] [Code]

  4. "Intermediate-Task Transfer Learning with Pretrained Language Models: When and Why Does It Work?". ACL(2020) [PDF]

  5. "What to Pre-Train on? Efficient Intermediate Task Selection". EMNLP(2021) [PDF] [Code]

  6. "On the Influence of Masking Policies in Intermediate Pre-training". EMNLP(2021) [PDF]

  7. TADPOLE: "TADPOLE: Task ADapted Pre-Training via AnOmaLy DEtection". EMNLP(2021) [PDF]

6.2 多任务微调            

  1. MT-DNN: "Multi-Task Deep Neural Networks for Natural Language Understanding". ACL(2019) [PDF] [Code]

  2. "BAM! Born-Again Multi-Task Networks for Natural Language Understanding". ACL(2019) [PDF] [Code]

  3. "Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding". arXiv(2019) [PDF] [Code]

  4. GradTS: "GradTS: A Gradient-Based Automatic Auxiliary Task Selection Method Based on Transformer Networks". EMNLP(2021) [PDF]

  5. "What's in Your Head? Emergent Behaviour in Multi-Task Transformer Models". EMNLP(2021) [PDF]

  6. MTAdam: "MTAdam: Automatic Balancing of Multiple Training Loss Terms". EMNLP(2021) [PDF]

  7. Muppet: "Muppet: Massive Multi-task Representations with Pre-Finetuning". EMNLP(2021) [PDF]

  8. "The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders". EMNLP(2021) [PDF] [Code]

  9. BERTGen: "BERTGen: Multi-task Generation through BERT". ACL(2021) [PDF] [Code]

  10. "Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks". ACL(2021) [PDF] [Code]

6.3 Adapter

  1. "BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning". ICML(2019) [PDF] [Code]

  2. Adapter: "Parameter-Efficient Transfer Learning for NLP". ICML(2019) [PDF] [Code]

  3. AdapterDrop: "AdapterDrop: On the Efficiency of Adapters in Transformers". EMNLP(2021) [PDF]

  4. "On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation". ACL(2021) [PDF]

  5. "Learning to Generate Task-Specific Adapters from Task Description". ACL(2021) [PDF] [Code]

6.4 Prompt

  1. PET: "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference". EACL(2021) [PDF] [Code]

  2. "It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners". NAACL(2021) [PDF] [Code]

  3. "Prefix-Tuning: Optimizing Continuous Prompts for Generation". arXiv(2021) [PDF]

  4. LM-BFF: "Making Pre-trained Language Models Better Few-shot Learners". ACL(2021) [PDF] [Code]

  5. "What Makes Good In-Context Examples for GPT-3?". arXiv(2021) [PDF] [Code]

  6. "The Power of Scale for Parameter-Efficient Prompt Tuning". EMNLP(2021) [PDF] [Code]

  7. "Finetuned Language Models Are Zero-Shot Learners". arXiv(2021) [PDF]

  8. "Calibrate Before Use: Improving Few-shot Performance of Language Models". ICML(2021) [PDF] [Code]

  9. TransPrompt: "TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification". EMNLP(2021) [PDF] [Code]

  10. SFLM: "Revisiting Self-training for Few-shot Learning of Language Model". EMNLP(2021) [PDF] [Code]

  11. ADAPET: "Improving and Simplifying Pattern Exploiting Training". EMNLP(2021) [PDF] [Code]

6.5 其他

  1. "To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks". RepL4NLP(2019) [PDF]

  2. "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models". NAACL(2019) [PDF] [Code]

  3. "Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping". arXiv(2020) [PDF]

  4. SMART: "SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization". EMNLP(2020) [PDF] [Code]

  5. "Revisiting Few-sample BERT Fine-tuning". ICLR(2021) [PDF]

  6. Mirror-BERT: "Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders". EMNLP(2021) [PDF] [Code]

  7. "Pre-train or Annotate? Domain Adaptation with a Constrained Budget". EMNLP(2021) [PDF] [Code]

  8. AVocaDo: "AVocaDo: Strategy for Adapting Vocabulary to Downstream Domain". EMNLP(2021) [PDF]

  9. CHILD-TUNING: "Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning". EMNLP(2021) [PDF] [Code]

  10. "Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation". ACL(2021) [PDF] [Code]

  11. LexFit: "LexFit: Lexical Fine-Tuning of Pretrained Language Models". ACL(2021) [PDF] [Code]

  12. "Selecting Informative Contexts Improves Language Model Fine-tuning". ACL(2021) [PDF] [Code]

  13. "An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models". ACL(2021) [PDF] [Code]

  14. "How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?". NeurIPS(2021) [PDF] [Code]


投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

从 200 多篇顶会论文看预训练语言模型研究进展_第1张图片

记得备注呦

整理不易,还望给个在看!

你可能感兴趣的:(人工智能,机器学习,深度学习,nlp,编程语言)