在 Kubernetes 上搭建 EFK 日志收集系统

https://www.qikqiak.com/post/install-efk-stack-on-k8s/

Kubernetes 中比较流行的日志收集解决方案是 Elasticsearch、Fluentd 和 Kibana(EFK)技术栈,也是官方现在比较推荐的一种方案。

Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。

Elasticsearch 通常与 Kibana 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。

Fluentd是一个流行的开源数据收集器, 将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

部署环境:

Kubernetes: v1.17.0
Elasticsearch : v7.5.2
Kibana : v7.5.2
Fluentd : v3.0.1

创建 Elasticsearch 集群

1.创建一个命名空间,在其中安装所有日志相关的资源对象

建一个 kube-logging.yaml

apiVersion: v1
kind: Namespace
metadata:
  name: logging

然后通过 kubectl 创建该资源清单,创建一个名为 logging 的 namespace:

$ kubectl create -f kube-logging.yaml
namespace/logging created
$ kubectl get ns
NAME           STATUS    AGE
default        Active    244d
istio-system   Active    100d
kube-ops       Active    179d
kube-public    Active    244d
kube-system    Active    244d
logging        Active    4h
monitoring     Active    35d

SVC资源文件

#  elasticsearch-svc.yaml
kind: Service
apiVersion: v1
metadata:
  name: elasticsearch
  namespace: logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
    - port: 9200
      name: rest
    - port: 9300
      name: inter-node

Elasticsearch StatefulSet 资源清单文件

# elasticsearch-statefulset.yaml 
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es
  namespace: logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels: 
        app: elasticsearch
    spec:
      nodeSelector:
        es: log
      initContainers:
      - name: increase-vm-max-map
        image: busybox
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.6.2
        ports:
        - name: rest
          containerPort: 9200
        - name: inter
          containerPort: 9300
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 1000m
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
        - name: cluster.name
          value: k8s-logs
        - name: node.name
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: cluster.initial_master_nodes
          value: "es-0,es-1,es-2"
        - name: discovery.zen.minimum_master_nodes
          value: "2"
        - name: discovery.seed_hosts
          value: "elasticsearch"
        - name: ES_JAVA_OPTS
          value: "-Xms512m -Xmx512m"
        - name: network.host
          value: "0.0.0.0"
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: rook-ceph-block
      resources:
        requests:
          storage: 50Gi 

使用 kubectl 工具部署即可:

$ kubectl create -f elasticsearch-statefulset.yaml
$ kubectl create -f elasticsearch-svc.yaml

创建 Kibana 服务

定义两个资源对象,一个 Service 和 Deployment

# kibana.yaml
apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
  type: NodePort
  selector:
    app: kibana

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      nodeSelector:
        es: log
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.6.2
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 1000m
        env:
        - name: ELASTICSEARCH_HOSTS
          value: http://elasticsearch:9200
        ports:
        - containerPort: 5601

配置完成后,直接使用 kubectl 工具创建:

$ kubectl create -f kibana.yaml

创建完成后,可以查看 Kibana Pod 的运行状态:

$ kubectl get pods --namespace=logging
NAME                      READY   STATUS    RESTARTS   AGE
es-0                      1/1     Running   0          85m
es-1                      1/1     Running   0          84m
es-2                      1/1     Running   0          83m
kibana-5c565c47dd-xj4bd   1/1     Running   0          80m
$ kubectl get svc -n logging
NAME            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None            <none>        9200/TCP,9300/TCP   3h22m
kibana          NodePort    10.111.223.99   <none>        5601:31139/TCP      3h20m

如果 Pod 已经是 Running 状态了,证明应用已经部署成功了,然后可以通过 NodePort 来访问 Kibana 这个服务,在浏览器中打开http://<任意节点IP>:31139即可,如果看到如下欢迎界面证明 Kibana 已经成功部署到了 Kubernetes集群之中
在 Kubernetes 上搭建 EFK 日志收集系统_第1张图片

部署 Fluentd

Fluentd 是一个高效的日志聚合器,是用 Ruby 编写的,并且可以很好地扩展。对于大部分企业来说,Fluentd 足够高效并且消耗的资源相对较少,另外一个工具Fluent-bit更轻量级,占用资源更少,但是插件相对 Fluentd 来说不够丰富,所以整体来说,Fluentd 更加成熟,使用更加广泛,所以 这里也同样使用 Fluentd 来作为日志收集工具

工作原理

Fluentd 通过一组给定的数据源抓取日志数据,处理后(转换成结构化的数据格式)将它们转发给其他服务,比如 Elasticsearch、对象存储等等。Fluentd 支持超过300个日志存储和分析服务,所以在这方面是非常灵活的。主要运行步骤如下:

  • 首先 Fluentd 从多个日志源获取数据
  • 结构化并且标记这些数据
  • 然后根据匹配的标签将数据发送到多个目标服务去
    在 Kubernetes 上搭建 EFK 日志收集系统_第2张图片

配置

通过 ConfigMap 对象来指定 Fluentd 配置文件,新建 fluentd-configmap.yaml 文件

kind: ConfigMap
apiVersion: v1
metadata:
  name: fluentd-config
  namespace: logging
data:
  system.conf: |-
    >
      root_dir /tmp/fluentd-buffers/
    >
  containers.input.conf: |-
    >
      @id fluentd-containers.log
      @type tail                              # Fluentd 内置的输入方式,其原理是不停地从源文件中获取新的日志。
      path /var/log/containers/*.log          # 挂载的服务器Docker容器日志地址
      pos_file /var/log/es-containers.log.pos
      tag raw.kubernetes.*                    # 设置日志标签
      read_from_head true
      >                                 # 多行格式化成JSON
        @type multi_format                    # 使用 multi-format-parser 解析器插件
        >
          format json                         # JSON解析器
          time_key time                       # 指定事件时间的时间字段
          time_format %Y-%m-%dT%H:%M:%S.%NZ   # 时间格式
        >
        >
          format /^(?>.+) (?>stdout|stderr) [^ ]* (?>.*)$/
          time_format %Y-%m-%dT%H:%M:%S.%N%:z
        >
      >
    >
    # 在日志输出中检测异常,并将其作为一条日志转发 
    # https://github.com/GoogleCloudPlatform/fluent-plugin-detect-exceptions
    >           # 匹配tag为raw.kubernetes.**日志信息
      @id raw.kubernetes
      @type detect_exceptions           # 使用detect-exceptions插件处理异常栈信息
      remove_tag_prefix raw             # 移除 raw 前缀
      message log                       
      stream stream                     
      multiline_flush_interval 5
      max_bytes 500000
      max_lines 1000
    >

    >  # 拼接日志
      @id filter_concat
      @type concat                # Fluentd Filter 插件,用于连接多个事件中分隔的多行日志。
      key message
      multiline_end_regexp /\n$/  # 以换行符“\n”拼接
      separator ""
    > 

    # 添加 Kubernetes metadata 数据
    >
      @id filter_kubernetes_metadata
      @type kubernetes_metadata
    >

    # 修复 ES 中的 JSON 字段
    # 插件地址:https://github.com/repeatedly/fluent-plugin-multi-format-parser
    >
      @id filter_parser
      @type parser                # multi-format-parser多格式解析器插件
      key_name log                # 在要解析的记录中指定字段名称。
      reserve_data true           # 在解析结果中保留原始键值对。
      remove_key_name_field true  # key_name 解析成功后删除字段。
      >
        @type multi_format
        >
          format json
        >
        >
          format none
        >
      >
    >

    # 删除一些多余的属性
    >
      @type record_transformer
      remove_keys $.docker.container_id,$.kubernetes.container_image_id,$.kubernetes.pod_id,$.kubernetes.namespace_id,$.kubernetes.master_url,$.kubernetes.labels.pod-template-hash
    >

    # 只保留具有logging=true标签的Pod日志
    >
      @id filter_log
      @type grep
      >
        key $.kubernetes.labels.logging
        pattern ^true$
      >
    >
  
  ###### 监听配置,一般用于日志聚合用 ######
  forward.input.conf: |-
    # 监听通过TCP发送的消息
    >
      @id forward
      @type forward
    >

  output.conf: |-
    >
      @id elasticsearch
      @type elasticsearch
      @log_level info
      include_tag_key true
      host elasticsearch
      port 9200
      logstash_format true
      logstash_prefix k8s  # 设置 index 前缀为 k8s
      request_timeout    30s
      >
        @type file
        path /var/log/fluentd-buffers/kubernetes.system.buffer
        flush_mode interval
        retry_type exponential_backoff
        flush_thread_count 2
        flush_interval 5s
        retry_forever
        retry_max_interval 30
        chunk_limit_size 2M
        queue_limit_length 8
        overflow_action block
      >
    >

配置文件中 只配置了 docker 容器日志目录,收集到数据经过处理后发送到 elasticsearch:9200 服务
然后新建一个 fluentd-daemonset.yaml 的文件

apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
  - ""
  resources:
  - "namespaces"
  - "pods"
  verbs:
  - "get"
  - "watch"
  - "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
  name: fluentd-es
  namespace: logging
  apiGroup: ""
roleRef:
  kind: ClusterRole
  name: fluentd-es
  apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  selector:
    matchLabels:
      k8s-app: fluentd-es
  template:
    metadata:
      labels:
        k8s-app: fluentd-es
        kubernetes.io/cluster-service: "true"
      # 此注释确保如果节点被驱逐,fluentd不会被驱逐,支持关键的基于 pod 注释的优先级方案。
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ''
    spec:
      serviceAccountName: fluentd-es
      containers:
      - name: fluentd-es
        image: quay.io/fluentd_elasticsearch/fluentd:v3.0.1
        env:
        - name: FLUENTD_ARGS
          value: --no-supervisor -q
        resources:
          limits:
            memory: 500Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /data/docker/containers
          readOnly: true
        - name: config-volume
          mountPath: /etc/fluent/config.d
      nodeSelector:
        beta.kubernetes.io/fluentd-ds-ready: "true"
      tolerations:
      - operator: Exists
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /data/docker/containers
      - name: config-volume
        configMap:
          name: fluentd-config

为了能够灵活控制哪些节点的日志可以被收集,所以 这里还添加了一个 nodSelector 属性:

nodeSelector:
  beta.kubernetes.io/fluentd-ds-ready: "true"
# 意思就是要想采集节点的日志,那么 就需要给节点打上上面的标签

如果你需要在其他节点上采集日志,则需要给对应节点打上标签

$ kubectl label nodes $NodeName beta.kubernetes.io/fluentd-ds-ready=true

另外需要注意的地方是,我这里的测试环境更改了 docker 的根目录:

$ docker info
...
Docker Root Dir: /data/docker
...

所以上面要获取 docker 的容器目录需要更改成/data/docker/containers,这个地方非常重要,当然如果你没有更改 docker 根目录则使用默认的/var/lib/docker/containers目录即可

分别创建上面的 ConfigMap 对象和 DaemonSet:

$ kubectl create -f fluentd-configmap.yaml
$ kubectl create -f fluentd-daemonset.yaml

创建完成后,查看对应的 Pods 列表,检查是否部署成功:

$ kubectl get pods -n logging
NAME                      READY   STATUS    RESTARTS   AGE
es-0                      1/1     Running   0          108m
es-1                      1/1     Running   0          107m
es-2                      1/1     Running   0          106m
fluentd-es-h4jl2          1/1     Running   0          100m
fluentd-es-vngmd          1/1     Running   0          100m
kibana-5c565c47dd-xj4bd   1/1     Running   0          103m

Fluentd 启动成功后,这个时候就可以发送日志到 ES 了,但是这里是过滤了只采集具有 logging=true 标签的 Pod 日志,所以现在还没有任何数据会被采集。

下面 部署一个简单的测试应用, 新建 counter.yaml 文件,文件内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: counter
  labels:
    logging: "true"  # 一定要具有该标签才会被采集
spec:
  containers:
  - name: count
    image: busybox
    args: [/bin/sh, -c,
            'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']

该 Pod 只是简单将日志信息打印到 stdout,所以正常来说 Fluentd 会收集到这个日志数据,在 Kibana 中也就可以找到对应的日志数据了,使用 kubectl 工具创建该 Pod:

$ kubectl create -f counter.yaml
$ kubectl get pods
NAME                             READY   STATUS    RESTARTS   AGE
counter                          1/1     Running   0          9h

Pod 创建并运行后,回到 Kibana Dashboard 页面,点击左侧最下面的 management 图标,然后点击 Kibana 下面的 Index Patterns 开始导入索引数据:
在 Kubernetes 上搭建 EFK 日志收集系统_第3张图片

在这里可以配置需要的 Elasticsearch 索引,前面 Fluentd 配置文件中采集的日志使用的是 logstash 格式,定义了一个 k8s 的前缀,所以这里只需要在文本框中输入k8s-*即可匹配到 Elasticsearch 集群中采集的 Kubernetes 集群日志数据,然后点击下一步,进入以下页面:
在 Kubernetes 上搭建 EFK 日志收集系统_第4张图片

日志展示

点击左侧导航菜单中的Discover,然后就可以看到一些直方图和最近采集到的日志数据了:

在 Kubernetes 上搭建 EFK 日志收集系统_第5张图片

筛选过滤:

点击Search搜索框–>点击-“kubernetes.container_name.keyword”–>点击"equals some value"–>选择要查看的项目名称

  • 1.选择查询关键字

在 Kubernetes 上搭建 EFK 日志收集系统_第6张图片

  • 2.更新查询条件

在 Kubernetes 上搭建 EFK 日志收集系统_第7张图片

  • 3.自定义日志展示字段

在 Kubernetes 上搭建 EFK 日志收集系统_第8张图片

  • 设置刷新时间间隔

在 Kubernetes 上搭建 EFK 日志收集系统_第9张图片

你可能感兴趣的:(kubernetes,kubernetes,EFK,Elasticsearch,Fluentd,Kibana)